paperless-ngx/IMPROVEMENT_ROADMAP.md
Claude e7b426caf1
fix(linting): corrige errores de formato y sintaxis detectados por pre-commit
- Elimina import duplicado de DeletionRequestViewSet en urls.py (F811)
- Aplica formato automático con ruff format a 12 archivos Python
- Agrega comas finales faltantes (COM812) en 74 ubicaciones
- Normaliza formato de dependencias en pyproject.toml
- Corrige ortografía en archivos de documentación (codespell)

Errores corregidos:
- src/paperless/urls.py: Import duplicado de DeletionRequestViewSet
- 74 violaciones de COM812 (comas finales faltantes)
- Formato inconsistente en múltiples archivos Python

Este commit asegura que el código pase el linting check de pre-commit
y resuelve los problemas de formato introducidos en el commit anterior.

Archivos Python reformateados: 12
Archivos de documentación corregidos: 35
Comas finales agregadas: 74
2025-11-17 19:17:49 +00:00

37 KiB

IntelliDocs-ngx Improvement Roadmap

Executive Summary

This document provides a prioritized roadmap for improving IntelliDocs-ngx with detailed recommendations, implementation plans, and expected outcomes.


Quick Reference: Priority Matrix

Category Priority Effort Impact Timeline
Performance Optimization High Low-Medium High 2-3 weeks
Security Hardening High Medium High 3-4 weeks
AI/ML Enhancement High High Very High 4-6 weeks
Advanced OCR High Medium High 3-4 weeks
Mobile Experience Medium Very High Medium 6-8 weeks
Collaboration Features Medium Medium-High Medium 4-5 weeks
Integration Expansion Medium Medium Medium 3-4 weeks
Analytics & Reporting Medium Medium Medium 3-4 weeks

Part 1: Critical Improvements (Start Immediately)

1.1 Performance Optimization

1.1.1 Database Query Optimization

Current Issues:

  • N+1 queries in document list endpoint
  • Missing indexes on commonly filtered fields
  • Inefficient JOIN operations
  • Slow full-text search on large datasets

Proposed Solutions:

# BEFORE (N+1 problem)
def list_documents(request):
    documents = Document.objects.all()
    for doc in documents:
        correspondent_name = doc.correspondent.name  # Extra query each time
        doc_type_name = doc.document_type.name      # Extra query each time

# AFTER (Optimized)
def list_documents(request):
    documents = Document.objects.select_related(
        'correspondent',
        'document_type',
        'storage_path',
        'owner'
    ).prefetch_related(
        'tags',
        'custom_fields'
    ).all()

Database Migrations Needed:

# Migration: Add composite indexes
class Migration(migrations.Migration):
    operations = [
        migrations.AddIndex(
            model_name='document',
            index=models.Index(
                fields=['correspondent', 'created'],
                name='doc_corr_created_idx'
            )
        ),
        migrations.AddIndex(
            model_name='document',
            index=models.Index(
                fields=['document_type', 'created'],
                name='doc_type_created_idx'
            )
        ),
        migrations.AddIndex(
            model_name='document',
            index=models.Index(
                fields=['owner', 'created'],
                name='doc_owner_created_idx'
            )
        ),
        # Full-text search optimization
        migrations.RunSQL(
            "CREATE INDEX doc_content_idx ON documents_document "
            "USING gin(to_tsvector('english', content));"
        ),
    ]

Expected Results:

  • 5-10x faster document list queries
  • 3-5x faster search queries
  • Reduced database CPU usage by 40-60%

Implementation Time: 1 week


1.1.2 Caching Strategy

Redis Caching Implementation:

# documents/caching.py
from django.core.cache import cache
from django.db.models.signals import post_save, post_delete
from functools import wraps

def cache_document_metadata(timeout=3600):
    """Cache document metadata for 1 hour"""
    def decorator(func):
        @wraps(func)
        def wrapper(document_id, *args, **kwargs):
            cache_key = f'doc_metadata_{document_id}'
            result = cache.get(cache_key)
            if result is None:
                result = func(document_id, *args, **kwargs)
                cache.set(cache_key, result, timeout)
            return result
        return wrapper
    return decorator

# Invalidate cache on document changes
@receiver(post_save, sender=Document)
def invalidate_document_cache(sender, instance, **kwargs):
    cache_keys = [
        f'doc_metadata_{instance.id}',
        f'doc_thumbnail_{instance.id}',
        f'doc_preview_{instance.id}',
    ]
    cache.delete_many(cache_keys)

# Cache correspondent/tag lists (rarely change)
def get_correspondent_list():
    cache_key = 'correspondent_list'
    result = cache.get(cache_key)
    if result is None:
        result = list(Correspondent.objects.all().values('id', 'name'))
        cache.set(cache_key, result, 3600 * 24)  # 24 hours
    return result

Configuration:

# settings.py
CACHES = {
    'default': {
        'BACKEND': 'django_redis.cache.RedisCache',
        'LOCATION': 'redis://redis:6379/1',
        'OPTIONS': {
            'CLIENT_CLASS': 'django_redis.client.DefaultClient',
            'PARSER_CLASS': 'redis.connection.HiredisParser',
            'CONNECTION_POOL_CLASS_KWARGS': {
                'max_connections': 50,
            }
        },
        'KEY_PREFIX': 'intellidocs',
        'TIMEOUT': 3600,
    }
}

Expected Results:

  • 10x faster metadata queries
  • 50% reduction in database load
  • Better scalability for concurrent users

Implementation Time: 1 week


1.1.3 Frontend Performance

Lazy Loading and Code Splitting:

// app-routing.module.ts - Implement lazy loading
const routes: Routes = [
  {
    path: 'documents',
    loadChildren: () => import('./documents/documents.module')
      .then(m => m.DocumentsModule)
  },
  {
    path: 'settings',
    loadChildren: () => import('./settings/settings.module')
      .then(m => m.SettingsModule)
  },
  // ... other routes
];

Virtual Scrolling for Large Lists:

// document-list.component.ts
import { ScrollingModule } from '@angular/cdk/scrolling';

@Component({
  template: `
    <cdk-virtual-scroll-viewport itemSize="100" class="document-list">
      <div *cdkVirtualFor="let document of documents" class="document-item">
        <app-document-card [document]="document"></app-document-card>
      </div>
    </cdk-virtual-scroll-viewport>
  `
})
export class DocumentListComponent {
  // Only renders visible items + buffer
}

Image Optimization:

// Add WebP thumbnail support
getOptimizedThumbnailUrl(documentId: number): string {
  // Check browser WebP support
  if (this.supportsWebP()) {
    return `/api/documents/${documentId}/thumb/?format=webp`;
  }
  return `/api/documents/${documentId}/thumb/`;
}

// Progressive loading
loadThumbnail(documentId: number): void {
  // Load low-quality placeholder first
  this.thumbnailUrl = `/api/documents/${documentId}/thumb/?quality=10`;

  // Then load high-quality version
  const img = new Image();
  img.onload = () => {
    this.thumbnailUrl = `/api/documents/${documentId}/thumb/?quality=85`;
  };
  img.src = `/api/documents/${documentId}/thumb/?quality=85`;
}

Expected Results:

  • 50% faster initial page load (2-4s → 1-2s)
  • 60% smaller bundle size
  • Smooth scrolling with 10,000+ documents

Implementation Time: 1 week


1.2 Security Hardening

1.2.1 Implement Document Encryption at Rest

Purpose: Protect sensitive documents from unauthorized access.

Implementation:

# documents/encryption.py
from cryptography.fernet import Fernet
from django.conf import settings
import base64

class DocumentEncryption:
    """Handle document encryption/decryption"""

    def __init__(self):
        # Key should be stored in secure key management system
        self.cipher = Fernet(settings.DOCUMENT_ENCRYPTION_KEY)

    def encrypt_file(self, file_path: str) -> str:
        """Encrypt a document file"""
        with open(file_path, 'rb') as f:
            plaintext = f.read()

        ciphertext = self.cipher.encrypt(plaintext)

        encrypted_path = f"{file_path}.encrypted"
        with open(encrypted_path, 'wb') as f:
            f.write(ciphertext)

        return encrypted_path

    def decrypt_file(self, encrypted_path: str, output_path: str = None):
        """Decrypt a document file"""
        with open(encrypted_path, 'rb') as f:
            ciphertext = f.read()

        plaintext = self.cipher.decrypt(ciphertext)

        if output_path:
            with open(output_path, 'wb') as f:
                f.write(plaintext)
            return output_path

        return plaintext

    def decrypt_stream(self, encrypted_path: str):
        """Decrypt file as a stream for serving"""
        import io
        plaintext = self.decrypt_file(encrypted_path)
        return io.BytesIO(plaintext)

# Integrate into consumer
class Consumer:
    def _write(self, document, path, ...):
        # ... existing code ...

        if settings.ENABLE_DOCUMENT_ENCRYPTION:
            encryption = DocumentEncryption()
            # Encrypt original file
            encrypted_path = encryption.encrypt_file(source_path)
            os.rename(encrypted_path, source_path)

            # Encrypt archive file
            if archive_path:
                encrypted_archive = encryption.encrypt_file(archive_path)
                os.rename(encrypted_archive, archive_path)

Configuration:

# settings.py
ENABLE_DOCUMENT_ENCRYPTION = get_env_bool('PAPERLESS_ENABLE_ENCRYPTION', False)
DOCUMENT_ENCRYPTION_KEY = os.environ.get('PAPERLESS_ENCRYPTION_KEY')

# Key rotation support
DOCUMENT_ENCRYPTION_KEY_VERSION = get_env_int('PAPERLESS_ENCRYPTION_KEY_VERSION', 1)

Key Management:

# Generate encryption key
python manage.py generate_encryption_key

# Rotate keys (re-encrypt all documents)
python manage.py rotate_encryption_key --old-key-version 1 --new-key-version 2

Expected Results:

  • Documents protected at rest
  • Compliance with GDPR, HIPAA requirements
  • Minimal performance impact (<5% overhead)

Implementation Time: 2 weeks


1.2.2 API Rate Limiting

Implementation:

# paperless/middleware.py
from django.core.cache import cache
from django.http import HttpResponse
import time

class RateLimitMiddleware:
    """Rate limit API requests per user/IP"""

    def __init__(self, get_response):
        self.get_response = get_response

    def __call__(self, request):
        if request.path.startswith('/api/'):
            # Get identifier (user ID or IP)
            if request.user.is_authenticated:
                identifier = f'user_{request.user.id}'
            else:
                identifier = f'ip_{self.get_client_ip(request)}'

            # Check rate limit
            if not self.check_rate_limit(identifier, request.path):
                return HttpResponse(
                    'Rate limit exceeded. Please try again later.',
                    status=429
                )

        return self.get_response(request)

    def check_rate_limit(self, identifier: str, path: str) -> bool:
        """
        Rate limits:
        - /api/documents/: 100 requests per minute
        - /api/search/: 30 requests per minute
        - /api/upload/: 10 requests per minute
        """
        rate_limits = {
            '/api/documents/': (100, 60),
            '/api/search/': (30, 60),
            '/api/upload/': (10, 60),
            'default': (200, 60)
        }

        # Find matching rate limit
        limit, window = rate_limits.get('default')
        for pattern, (l, w) in rate_limits.items():
            if path.startswith(pattern):
                limit, window = l, w
                break

        # Check cache
        cache_key = f'rate_limit_{identifier}_{path}'
        current = cache.get(cache_key, 0)

        if current >= limit:
            return False

        # Increment counter
        cache.set(cache_key, current + 1, window)
        return True

    def get_client_ip(self, request):
        x_forwarded_for = request.META.get('HTTP_X_FORWARDED_FOR')
        if x_forwarded_for:
            ip = x_forwarded_for.split(',')[0]
        else:
            ip = request.META.get('REMOTE_ADDR')
        return ip

Expected Results:

  • Protection against DoS attacks
  • Fair resource allocation
  • Better system stability

Implementation Time: 3 days


1.2.3 Security Headers & CSP

# paperless/middleware.py
class SecurityHeadersMiddleware:
    """Add security headers to responses"""

    def __init__(self, get_response):
        self.get_response = get_response

    def __call__(self, request):
        response = self.get_response(request)

        # Strict Transport Security
        response['Strict-Transport-Security'] = 'max-age=31536000; includeSubDomains'

        # Content Security Policy
        response['Content-Security-Policy'] = (
            "default-src 'self'; "
            "script-src 'self' 'unsafe-inline' 'unsafe-eval'; "
            "style-src 'self' 'unsafe-inline'; "
            "img-src 'self' data: blob:; "
            "font-src 'self' data:; "
            "connect-src 'self' ws: wss:; "
            "frame-ancestors 'none';"
        )

        # X-Frame-Options (prevent clickjacking)
        response['X-Frame-Options'] = 'DENY'

        # X-Content-Type-Options
        response['X-Content-Type-Options'] = 'nosniff'

        # X-XSS-Protection
        response['X-XSS-Protection'] = '1; mode=block'

        # Referrer Policy
        response['Referrer-Policy'] = 'strict-origin-when-cross-origin'

        # Permissions Policy
        response['Permissions-Policy'] = (
            'geolocation=(), microphone=(), camera=()'
        )

        return response

Implementation Time: 2 days


1.3 AI & Machine Learning Enhancements

1.3.1 Implement Advanced NLP with Transformers

Current: LinearSVC with TF-IDF (basic) Proposed: BERT-based classification (state-of-the-art)

Implementation:

# documents/ml/transformer_classifier.py
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer
import torch
from torch.utils.data import Dataset

class DocumentDataset(Dataset):
    """Dataset for document classification"""

    def __init__(self, documents, labels, tokenizer, max_length=512):
        self.documents = documents
        self.labels = labels
        self.tokenizer = tokenizer
        self.max_length = max_length

    def __len__(self):
        return len(self.documents)

    def __getitem__(self, idx):
        doc = self.documents[idx]
        label = self.labels[idx]

        encoding = self.tokenizer(
            doc.content,
            truncation=True,
            padding='max_length',
            max_length=self.max_length,
            return_tensors='pt'
        )

        return {
            'input_ids': encoding['input_ids'].flatten(),
            'attention_mask': encoding['attention_mask'].flatten(),
            'labels': torch.tensor(label, dtype=torch.long)
        }

class TransformerDocumentClassifier:
    """BERT-based document classifier"""

    def __init__(self, model_name='distilbert-base-uncased'):
        self.model_name = model_name
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = None

    def train(self, documents, labels):
        """Train the classifier"""
        # Prepare dataset
        dataset = DocumentDataset(documents, labels, self.tokenizer)

        # Split train/validation
        train_size = int(0.9 * len(dataset))
        val_size = len(dataset) - train_size
        train_dataset, val_dataset = torch.utils.data.random_split(
            dataset, [train_size, val_size]
        )

        # Load model
        num_labels = len(set(labels))
        self.model = AutoModelForSequenceClassification.from_pretrained(
            self.model_name,
            num_labels=num_labels
        )

        # Training arguments
        training_args = TrainingArguments(
            output_dir='./models/document_classifier',
            num_train_epochs=3,
            per_device_train_batch_size=8,
            per_device_eval_batch_size=8,
            warmup_steps=500,
            weight_decay=0.01,
            logging_dir='./logs',
            logging_steps=10,
            evaluation_strategy='epoch',
            save_strategy='epoch',
            load_best_model_at_end=True,
        )

        # Train
        trainer = Trainer(
            model=self.model,
            args=training_args,
            train_dataset=train_dataset,
            eval_dataset=val_dataset,
        )

        trainer.train()

        # Save model
        self.model.save_pretrained('./models/document_classifier_final')
        self.tokenizer.save_pretrained('./models/document_classifier_final')

    def predict(self, document_text):
        """Classify a document"""
        if self.model is None:
            self.model = AutoModelForSequenceClassification.from_pretrained(
                './models/document_classifier_final'
            )

        # Tokenize
        inputs = self.tokenizer(
            document_text,
            truncation=True,
            padding=True,
            max_length=512,
            return_tensors='pt'
        )

        # Predict
        with torch.no_grad():
            outputs = self.model(**inputs)
            predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
            predicted_class = torch.argmax(predictions, dim=-1).item()
            confidence = predictions[0][predicted_class].item()

        return predicted_class, confidence

Named Entity Recognition:

# documents/ml/ner.py
from transformers import pipeline

class DocumentNER:
    """Extract entities from documents"""

    def __init__(self):
        self.ner_pipeline = pipeline(
            "ner",
            model="dslim/bert-base-NER",
            aggregation_strategy="simple"
        )

    def extract_entities(self, text):
        """Extract named entities"""
        entities = self.ner_pipeline(text)

        # Organize by type
        organized = {
            'persons': [],
            'organizations': [],
            'locations': [],
            'dates': [],
            'amounts': []
        }

        for entity in entities:
            entity_type = entity['entity_group']
            if entity_type == 'PER':
                organized['persons'].append(entity['word'])
            elif entity_type == 'ORG':
                organized['organizations'].append(entity['word'])
            elif entity_type == 'LOC':
                organized['locations'].append(entity['word'])
            # Add more entity types...

        return organized

    def extract_invoice_data(self, text):
        """Extract invoice-specific data"""
        # Use regex + NER for better results
        import re

        data = {}

        # Extract amounts
        amount_pattern = r'\$?\d+[,\d]*\.?\d{0,2}'
        amounts = re.findall(amount_pattern, text)
        data['amounts'] = amounts

        # Extract dates
        date_pattern = r'\d{1,2}[/-]\d{1,2}[/-]\d{2,4}'
        dates = re.findall(date_pattern, text)
        data['dates'] = dates

        # Extract invoice numbers
        invoice_pattern = r'(?:Invoice|Inv\.?)\s*#?\s*(\d+)'
        invoice_nums = re.findall(invoice_pattern, text, re.IGNORECASE)
        data['invoice_numbers'] = invoice_nums

        # Use NER for organization names
        entities = self.extract_entities(text)
        data['organizations'] = entities['organizations']

        return data

Semantic Search:

# documents/ml/semantic_search.py
from sentence_transformers import SentenceTransformer, util
import numpy as np

class SemanticSearch:
    """Semantic search using embeddings"""

    def __init__(self):
        self.model = SentenceTransformer('all-MiniLM-L6-v2')
        self.document_embeddings = {}

    def index_document(self, document_id, text):
        """Create embedding for document"""
        embedding = self.model.encode(text, convert_to_tensor=True)
        self.document_embeddings[document_id] = embedding

    def search(self, query, top_k=10):
        """Search documents by semantic similarity"""
        query_embedding = self.model.encode(query, convert_to_tensor=True)

        # Calculate similarities
        similarities = []
        for doc_id, doc_embedding in self.document_embeddings.items():
            similarity = util.cos_sim(query_embedding, doc_embedding).item()
            similarities.append((doc_id, similarity))

        # Sort by similarity
        similarities.sort(key=lambda x: x[1], reverse=True)

        return similarities[:top_k]

Expected Results:

  • 40-60% improvement in classification accuracy
  • Automatic metadata extraction (dates, amounts, parties)
  • Better search results (semantic understanding)
  • Support for more complex documents

Resource Requirements:

  • GPU recommended (can use CPU with slower inference)
  • 4-8GB additional RAM for models
  • ~2GB disk space for models

Implementation Time: 4-6 weeks


1.4 Advanced OCR Improvements

1.4.1 Table Detection and Extraction

Implementation:

# paperless_tesseract/table_extraction.py
import cv2
import pytesseract
import pandas as pd
from pdf2image import convert_from_path

class TableExtractor:
    """Extract tables from documents"""

    def detect_tables(self, image_path):
        """Detect table regions in image"""
        img = cv2.imread(image_path, 0)

        # Thresholding
        thresh = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]

        # Detect horizontal lines
        horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (40, 1))
        detect_horizontal = cv2.morphologyEx(
            thresh, cv2.MORPH_OPEN, horizontal_kernel, iterations=2
        )

        # Detect vertical lines
        vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 40))
        detect_vertical = cv2.morphologyEx(
            thresh, cv2.MORPH_OPEN, vertical_kernel, iterations=2
        )

        # Combine
        table_mask = cv2.add(detect_horizontal, detect_vertical)

        # Find contours (table regions)
        contours, _ = cv2.findContours(
            table_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
        )

        tables = []
        for contour in contours:
            x, y, w, h = cv2.boundingRect(contour)
            if w > 100 and h > 100:  # Minimum table size
                tables.append((x, y, w, h))

        return tables

    def extract_table_data(self, image_path, table_bbox):
        """Extract data from table region"""
        x, y, w, h = table_bbox

        # Crop table region
        img = cv2.imread(image_path)
        table_img = img[y:y+h, x:x+w]

        # OCR with table structure
        data = pytesseract.image_to_data(
            table_img,
            output_type=pytesseract.Output.DICT,
            config='--psm 6'  # Assume uniform block of text
        )

        # Organize into rows and columns
        rows = {}
        for i, text in enumerate(data['text']):
            if text.strip():
                row_num = data['top'][i] // 20  # Group by Y coordinate
                if row_num not in rows:
                    rows[row_num] = []
                rows[row_num].append({
                    'text': text,
                    'left': data['left'][i],
                    'confidence': data['conf'][i]
                })

        # Sort columns by X coordinate
        table_data = []
        for row_num in sorted(rows.keys()):
            row = rows[row_num]
            row.sort(key=lambda x: x['left'])
            table_data.append([cell['text'] for cell in row])

        return pd.DataFrame(table_data)

    def extract_all_tables(self, pdf_path):
        """Extract all tables from PDF"""
        # Convert PDF to images
        images = convert_from_path(pdf_path)

        all_tables = []
        for page_num, image in enumerate(images):
            # Save temp image
            temp_path = f'/tmp/page_{page_num}.png'
            image.save(temp_path)

            # Detect tables
            tables = self.detect_tables(temp_path)

            # Extract each table
            for table_bbox in tables:
                df = self.extract_table_data(temp_path, table_bbox)
                all_tables.append({
                    'page': page_num + 1,
                    'data': df
                })

        return all_tables

Expected Results:

  • Extract structured data from invoices, reports
  • 80-90% accuracy on well-formatted tables
  • Export to CSV/Excel
  • Searchable table contents

Implementation Time: 2-3 weeks


1.4.2 Handwriting Recognition

# paperless_tesseract/handwriting.py
from google.cloud import vision
import os

class HandwritingRecognizer:
    """OCR for handwritten documents"""

    def __init__(self):
        # Use Google Cloud Vision API (best for handwriting)
        self.client = vision.ImageAnnotatorClient()

    def recognize_handwriting(self, image_path):
        """Extract handwritten text"""
        with open(image_path, 'rb') as image_file:
            content = image_file.read()

        image = vision.Image(content=content)

        # Use DOCUMENT_TEXT_DETECTION for handwriting
        response = self.client.document_text_detection(image=image)

        if response.error.message:
            raise Exception(f'Error: {response.error.message}')

        # Extract text
        full_text = response.full_text_annotation.text

        # Extract with confidence scores
        pages = []
        for page in response.full_text_annotation.pages:
            page_text = []
            for block in page.blocks:
                for paragraph in block.paragraphs:
                    paragraph_text = []
                    for word in paragraph.words:
                        word_text = ''.join([
                            symbol.text for symbol in word.symbols
                        ])
                        confidence = word.confidence
                        paragraph_text.append({
                            'text': word_text,
                            'confidence': confidence
                        })
                    page_text.append(paragraph_text)
            pages.append(page_text)

        return {
            'text': full_text,
            'structured': pages
        }

Alternative: Use Azure Computer Vision or AWS Textract for handwriting

Expected Results:

  • Support for handwritten notes, forms
  • 70-85% accuracy (depending on handwriting quality)
  • Mixed printed/handwritten text support

Implementation Time: 2 weeks


Part 2: Medium Priority Improvements

2.1 Mobile Experience

2.1.1 Native Mobile Apps (React Native)

Why React Native:

  • Code sharing between iOS and Android
  • Near-native performance
  • Large ecosystem
  • TypeScript support

Core Features:

// MobileApp/src/screens/DocumentScanner.tsx
import { Camera } from 'react-native-vision-camera';
import DocumentScanner from 'react-native-document-scanner-plugin';

export const DocumentScannerScreen = () => {
  const scanDocument = async () => {
    const { scannedImages } = await DocumentScanner.scanDocument({
      maxNumDocuments: 1,
      letUserAdjustCrop: true,
      croppedImageQuality: 100,
    });

    if (scannedImages && scannedImages.length > 0) {
      // Upload to IntelliDocs
      await uploadDocument(scannedImages[0]);
    }
  };

  return (
    <View>
      <Button onPress={scanDocument} title="Scan Document" />
    </View>
  );
};

// Offline support
import AsyncStorage from '@react-native-async-storage/async-storage';
import NetInfo from '@react-native-community/netinfo';

export const DocumentService = {
  uploadDocument: async (file: File) => {
    const isConnected = await NetInfo.fetch().then(
      state => state.isConnected
    );

    if (!isConnected) {
      // Queue for later
      const queue = await AsyncStorage.getItem('upload_queue') || '[]';
      const queueData = JSON.parse(queue);
      queueData.push({ file, timestamp: Date.now() });
      await AsyncStorage.setItem('upload_queue', JSON.stringify(queueData));
      return { queued: true };
    }

    // Upload immediately
    return await api.uploadDocument(file);
  }
};

Implementation Time: 6-8 weeks


2.2 Collaboration Features

2.2.1 Document Comments and Annotations

# documents/models.py
class DocumentComment(models.Model):
    """Comments on documents"""
    document = models.ForeignKey(Document, related_name='comments')
    user = models.ForeignKey(User)
    text = models.TextField()
    created = models.DateTimeField(auto_now_add=True)
    modified = models.DateTimeField(auto_now=True)
    parent = models.ForeignKey('self', null=True, blank=True)  # For replies
    resolved = models.BooleanField(default=False)

    # For annotations (comments on specific locations)
    page_number = models.IntegerField(null=True)
    position_x = models.FloatField(null=True)
    position_y = models.FloatField(null=True)

class DocumentAnnotation(models.Model):
    """Visual annotations on documents"""
    document = models.ForeignKey(Document, related_name='annotations')
    user = models.ForeignKey(User)
    page_number = models.IntegerField()
    annotation_type = models.CharField(max_length=20)  # highlight, rectangle, arrow, text
    data = models.JSONField()  # Coordinates, colors, text
    created = models.DateTimeField(auto_now_add=True)

# API endpoints
class DocumentCommentViewSet(viewsets.ModelViewSet):
    def create(self, request, document_pk=None):
        """Add comment to document"""
        comment = DocumentComment.objects.create(
            document_id=document_pk,
            user=request.user,
            text=request.data['text'],
            page_number=request.data.get('page_number'),
            position_x=request.data.get('position_x'),
            position_y=request.data.get('position_y'),
        )

        # Notify other users
        notify_document_comment(comment)

        return Response(CommentSerializer(comment).data)

Frontend:

// annotation.component.ts
export class AnnotationComponent {
  annotations: Annotation[] = [];

  addHighlight(selection: Selection) {
    const range = selection.getRangeAt(0);
    const rect = range.getBoundingClientRect();

    const annotation: Annotation = {
      type: 'highlight',
      pageNumber: this.currentPage,
      x: rect.left,
      y: rect.top,
      width: rect.width,
      height: rect.height,
      color: '#FFFF00',
      text: selection.toString()
    };

    this.documentService.addAnnotation(
      this.documentId,
      annotation
    ).subscribe();
  }

  renderAnnotations() {
    // Overlay annotations on PDF viewer
    this.annotations.forEach(annotation => {
      const element = this.createAnnotationElement(annotation);
      this.pdfContainer.appendChild(element);
    });
  }
}

Implementation Time: 3-4 weeks


2.3 Integration Expansion

2.3.1 Cloud Storage Sync

# documents/integrations/cloud_storage.py
from dropbox import Dropbox
from google.oauth2 import service_account
from googleapiclient.discovery import build

class CloudStorageSync:
    """Sync documents with cloud storage"""

    def sync_with_dropbox(self, access_token):
        """Two-way sync with Dropbox"""
        dbx = Dropbox(access_token)

        # Get files from Dropbox
        result = dbx.files_list_folder('/IntelliDocs')

        for entry in result.entries:
            if entry.name.endswith('.pdf'):
                # Check if already imported
                if not Document.objects.filter(
                    original_filename=entry.name
                ).exists():
                    # Download and import
                    _, response = dbx.files_download(entry.path_display)
                    self.import_file(response.content, entry.name)

        # Upload new documents to Dropbox
        new_docs = Document.objects.filter(
            synced_to_dropbox=False
        )
        for doc in new_docs:
            with open(doc.source_path, 'rb') as f:
                dbx.files_upload(
                    f.read(),
                    f'/IntelliDocs/{doc.get_public_filename()}'
                )
            doc.synced_to_dropbox = True
            doc.save()

    def sync_with_google_drive(self, credentials_path):
        """Sync with Google Drive"""
        credentials = service_account.Credentials.from_service_account_file(
            credentials_path
        )
        service = build('drive', 'v3', credentials=credentials)

        # List files in Drive folder
        results = service.files().list(
            q="'folder_id' in parents",
            fields="files(id, name, mimeType)"
        ).execute()

        for item in results.get('files', []):
            # Download and import
            request = service.files().get_media(fileId=item['id'])
            # ... import logic

Implementation Time: 2-3 weeks per integration


2.4 Analytics & Reporting

# documents/analytics.py
from django.db.models import Count, Avg, Sum
from django.utils import timezone
from datetime import timedelta

class DocumentAnalytics:
    """Generate analytics and reports"""

    def get_dashboard_stats(self, user=None):
        """Get overview statistics"""
        queryset = Document.objects.all()
        if user:
            queryset = queryset.filter(owner=user)

        stats = {
            'total_documents': queryset.count(),
            'documents_this_month': queryset.filter(
                created__gte=timezone.now() - timedelta(days=30)
            ).count(),
            'total_pages': queryset.aggregate(
                Sum('page_count')
            )['page_count__sum'] or 0,
            'storage_used': queryset.aggregate(
                Sum('original_size')
            )['original_size__sum'] or 0,
        }

        # Documents by type
        stats['by_type'] = queryset.values(
            'document_type__name'
        ).annotate(
            count=Count('id')
        ).order_by('-count')

        # Documents by correspondent
        stats['by_correspondent'] = queryset.values(
            'correspondent__name'
        ).annotate(
            count=Count('id')
        ).order_by('-count')[:10]

        # Upload trend (last 12 months)
        upload_trend = []
        for i in range(12):
            date = timezone.now() - timedelta(days=30 * i)
            count = queryset.filter(
                created__year=date.year,
                created__month=date.month
            ).count()
            upload_trend.append({
                'month': date.strftime('%B %Y'),
                'count': count
            })
        stats['upload_trend'] = list(reversed(upload_trend))

        return stats

    def generate_report(self, report_type, start_date, end_date, filters=None):
        """Generate custom reports"""
        queryset = Document.objects.filter(
            created__gte=start_date,
            created__lte=end_date
        )

        if filters:
            if 'correspondent' in filters:
                queryset = queryset.filter(correspondent_id=filters['correspondent'])
            if 'document_type' in filters:
                queryset = queryset.filter(document_type_id=filters['document_type'])

        if report_type == 'summary':
            return self._generate_summary_report(queryset)
        elif report_type == 'detailed':
            return self._generate_detailed_report(queryset)
        elif report_type == 'compliance':
            return self._generate_compliance_report(queryset)

    def export_report(self, report_data, format='pdf'):
        """Export report to PDF/Excel"""
        if format == 'pdf':
            return self._export_to_pdf(report_data)
        elif format == 'xlsx':
            return self._export_to_excel(report_data)
        elif format == 'csv':
            return self._export_to_csv(report_data)

Frontend Dashboard:

// analytics-dashboard.component.ts
export class AnalyticsDashboardComponent implements OnInit {
  stats: DashboardStats;
  chartOptions: any;

  ngOnInit() {
    this.analyticsService.getDashboardStats().subscribe(stats => {
      this.stats = stats;
      this.setupCharts();
    });
  }

  setupCharts() {
    // Upload trend chart
    this.chartOptions = {
      series: [{
        name: 'Documents',
        data: this.stats.upload_trend.map(d => d.count)
      }],
      chart: {
        type: 'area',
        height: 350
      },
      xaxis: {
        categories: this.stats.upload_trend.map(d => d.month)
      }
    };
  }

  generateReport(type: string) {
    this.analyticsService.generateReport(type, {
      start_date: this.startDate,
      end_date: this.endDate,
      filters: this.filters
    }).subscribe(blob => {
      saveAs(blob, `report_${type}.pdf`);
    });
  }
}

Implementation Time: 3-4 weeks


Part 3: Long-term Vision

3.1 Advanced Features Roadmap (6-12 months)

  1. Blockchain Integration for document timestamping and immutability
  2. Advanced Compliance (ISO 15489, DOD 5015.2)
  3. Records Retention Automation with legal holds
  4. Multi-tenancy support for SaaS deployments
  5. Advanced Workflow with visual designer
  6. Custom Plugins system for extensions
  7. GraphQL API alongside REST
  8. Real-time Collaboration (Google Docs-style)

Conclusion

This roadmap provides a clear path to significantly improve IntelliDocs-ngx. Start with:

  1. Week 1-2: Performance optimization (quick wins)
  2. Week 3-4: Security hardening
  3. Week 5-10: AI/ML enhancements
  4. Week 11-14: Advanced OCR
  5. Month 4-6: Mobile & collaboration features

Each improvement has been detailed with implementation code, expected results, and time estimates. Prioritize based on your users' needs and available resources.


Generated: 2025-11-09 For: IntelliDocs-ngx v2.19.5