mirror of
https://github.com/paperless-ngx/paperless-ngx.git
synced 2025-12-11 09:07:18 +01:00
872 lines
32 KiB
Python
872 lines
32 KiB
Python
"""
|
|
AI Scanner Module for IntelliDocs-ngx
|
|
|
|
This module provides comprehensive AI-powered document scanning and metadata management.
|
|
It automatically analyzes documents on upload/consumption and manages:
|
|
- Tags
|
|
- Correspondents
|
|
- Document Types
|
|
- Storage Paths
|
|
- Custom Fields
|
|
- Workflow Assignments
|
|
|
|
According to agents.md requirements:
|
|
- AI scans every consumed/uploaded document
|
|
- AI suggests metadata for all manageable aspects
|
|
- AI cannot delete files without explicit user authorization
|
|
- AI must inform users comprehensively before any destructive action
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import logging
|
|
from typing import TYPE_CHECKING, Dict, List, Optional, Any, Tuple
|
|
|
|
from django.conf import settings
|
|
from django.db import transaction
|
|
|
|
if TYPE_CHECKING:
|
|
from documents.models import (
|
|
Document,
|
|
Tag,
|
|
Correspondent,
|
|
DocumentType,
|
|
StoragePath,
|
|
CustomField,
|
|
Workflow,
|
|
)
|
|
|
|
logger = logging.getLogger("paperless.ai_scanner")
|
|
|
|
|
|
class AIScanResult:
|
|
"""
|
|
Container for AI scan results with confidence scores and suggestions.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.tags: List[Tuple[int, float]] = [] # [(tag_id, confidence), ...]
|
|
self.correspondent: Optional[Tuple[int, float]] = None # (correspondent_id, confidence)
|
|
self.document_type: Optional[Tuple[int, float]] = None # (document_type_id, confidence)
|
|
self.storage_path: Optional[Tuple[int, float]] = None # (storage_path_id, confidence)
|
|
self.custom_fields: Dict[int, Tuple[Any, float]] = {} # {field_id: (value, confidence), ...}
|
|
self.workflows: List[Tuple[int, float]] = [] # [(workflow_id, confidence), ...]
|
|
self.extracted_entities: Dict[str, Any] = {} # NER results
|
|
self.title_suggestion: Optional[str] = None
|
|
self.metadata: Dict[str, Any] = {} # Additional metadata
|
|
|
|
def to_dict(self) -> Dict[str, Any]:
|
|
"""Convert scan results to dictionary for logging/serialization."""
|
|
return {
|
|
"tags": self.tags,
|
|
"correspondent": self.correspondent,
|
|
"document_type": self.document_type,
|
|
"storage_path": self.storage_path,
|
|
"custom_fields": self.custom_fields,
|
|
"workflows": self.workflows,
|
|
"extracted_entities": self.extracted_entities,
|
|
"title_suggestion": self.title_suggestion,
|
|
"metadata": self.metadata,
|
|
}
|
|
|
|
|
|
class AIDocumentScanner:
|
|
"""
|
|
Comprehensive AI scanner for automatic document metadata management.
|
|
|
|
This scanner integrates all ML/AI capabilities to provide automatic:
|
|
- Tag assignment based on content analysis
|
|
- Correspondent detection from document text
|
|
- Document type classification
|
|
- Storage path suggestion based on content/type
|
|
- Custom field extraction using NER
|
|
- Workflow assignment based on document characteristics
|
|
|
|
Features:
|
|
- High confidence threshold (>80%) for automatic application
|
|
- Medium confidence (60-80%) for suggestions requiring user review
|
|
- Low confidence (<60%) logged but not suggested
|
|
- All decisions are logged for auditing
|
|
- No destructive operations without user confirmation
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
auto_apply_threshold: float = 0.80,
|
|
suggest_threshold: float = 0.60,
|
|
enable_ml_features: bool = None,
|
|
enable_advanced_ocr: bool = None,
|
|
):
|
|
"""
|
|
Initialize AI scanner.
|
|
|
|
Args:
|
|
auto_apply_threshold: Confidence threshold for automatic application (default: 0.80)
|
|
suggest_threshold: Confidence threshold for suggestions (default: 0.60)
|
|
enable_ml_features: Override for ML features (uses settings if None)
|
|
enable_advanced_ocr: Override for advanced OCR (uses settings if None)
|
|
"""
|
|
self.auto_apply_threshold = auto_apply_threshold
|
|
self.suggest_threshold = suggest_threshold
|
|
|
|
# Check settings for ML/OCR enablement
|
|
self.ml_enabled = (
|
|
enable_ml_features
|
|
if enable_ml_features is not None
|
|
else getattr(settings, "PAPERLESS_ENABLE_ML_FEATURES", True)
|
|
)
|
|
self.advanced_ocr_enabled = (
|
|
enable_advanced_ocr
|
|
if enable_advanced_ocr is not None
|
|
else getattr(settings, "PAPERLESS_ENABLE_ADVANCED_OCR", True)
|
|
)
|
|
|
|
# Lazy loading of ML components
|
|
self._classifier = None
|
|
self._ner_extractor = None
|
|
self._semantic_search = None
|
|
self._table_extractor = None
|
|
|
|
logger.info(
|
|
f"AIDocumentScanner initialized - ML: {self.ml_enabled}, "
|
|
f"Advanced OCR: {self.advanced_ocr_enabled}"
|
|
)
|
|
|
|
def _get_classifier(self):
|
|
"""Lazy load the ML classifier."""
|
|
if self._classifier is None and self.ml_enabled:
|
|
try:
|
|
from documents.ml.classifier import TransformerDocumentClassifier
|
|
self._classifier = TransformerDocumentClassifier()
|
|
logger.info("ML classifier loaded successfully")
|
|
except Exception as e:
|
|
logger.warning(f"Failed to load ML classifier: {e}")
|
|
self.ml_enabled = False
|
|
return self._classifier
|
|
|
|
def _get_ner_extractor(self):
|
|
"""Lazy load the NER extractor."""
|
|
if self._ner_extractor is None and self.ml_enabled:
|
|
try:
|
|
from documents.ml.ner import DocumentNER
|
|
self._ner_extractor = DocumentNER()
|
|
logger.info("NER extractor loaded successfully")
|
|
except Exception as e:
|
|
logger.warning(f"Failed to load NER extractor: {e}")
|
|
return self._ner_extractor
|
|
|
|
def _get_semantic_search(self):
|
|
"""Lazy load semantic search."""
|
|
if self._semantic_search is None and self.ml_enabled:
|
|
try:
|
|
from documents.ml.semantic_search import SemanticSearch
|
|
self._semantic_search = SemanticSearch()
|
|
logger.info("Semantic search loaded successfully")
|
|
except Exception as e:
|
|
logger.warning(f"Failed to load semantic search: {e}")
|
|
return self._semantic_search
|
|
|
|
def _get_table_extractor(self):
|
|
"""Lazy load table extractor."""
|
|
if self._table_extractor is None and self.advanced_ocr_enabled:
|
|
try:
|
|
from documents.ocr.table_extractor import TableExtractor
|
|
self._table_extractor = TableExtractor()
|
|
logger.info("Table extractor loaded successfully")
|
|
except Exception as e:
|
|
logger.warning(f"Failed to load table extractor: {e}")
|
|
return self._table_extractor
|
|
|
|
def scan_document(
|
|
self,
|
|
document: Document,
|
|
document_text: str,
|
|
original_file_path: str = None,
|
|
) -> AIScanResult:
|
|
"""
|
|
Perform comprehensive AI scan of a document.
|
|
|
|
This is the main entry point for document scanning. It orchestrates
|
|
all AI/ML components to analyze the document and generate suggestions.
|
|
|
|
Args:
|
|
document: The Document model instance
|
|
document_text: The extracted text content
|
|
original_file_path: Path to original file (for OCR/image analysis)
|
|
|
|
Returns:
|
|
AIScanResult containing all suggestions and extracted data
|
|
"""
|
|
logger.info(f"Starting AI scan for document: {document.title} (ID: {document.pk})")
|
|
|
|
result = AIScanResult()
|
|
|
|
# Extract entities using NER
|
|
result.extracted_entities = self._extract_entities(document_text)
|
|
|
|
# Analyze and suggest tags
|
|
result.tags = self._suggest_tags(document, document_text, result.extracted_entities)
|
|
|
|
# Detect correspondent
|
|
result.correspondent = self._detect_correspondent(
|
|
document, document_text, result.extracted_entities
|
|
)
|
|
|
|
# Classify document type
|
|
result.document_type = self._classify_document_type(
|
|
document, document_text, result.extracted_entities
|
|
)
|
|
|
|
# Suggest storage path
|
|
result.storage_path = self._suggest_storage_path(
|
|
document, document_text, result
|
|
)
|
|
|
|
# Extract custom fields
|
|
result.custom_fields = self._extract_custom_fields(
|
|
document, document_text, result.extracted_entities
|
|
)
|
|
|
|
# Suggest workflows
|
|
result.workflows = self._suggest_workflows(document, document_text, result)
|
|
|
|
# Generate improved title suggestion
|
|
result.title_suggestion = self._suggest_title(
|
|
document, document_text, result.extracted_entities
|
|
)
|
|
|
|
# Extract tables if advanced OCR enabled
|
|
if self.advanced_ocr_enabled and original_file_path:
|
|
result.metadata["tables"] = self._extract_tables(original_file_path)
|
|
|
|
logger.info(f"AI scan completed for document {document.pk}")
|
|
logger.debug(f"Scan results: {result.to_dict()}")
|
|
|
|
return result
|
|
|
|
def _extract_entities(self, text: str) -> Dict[str, Any]:
|
|
"""
|
|
Extract named entities from document text using NER.
|
|
|
|
Returns:
|
|
Dictionary with extracted entities (persons, orgs, dates, amounts, etc.)
|
|
"""
|
|
ner = self._get_ner_extractor()
|
|
if not ner:
|
|
return {}
|
|
|
|
try:
|
|
# Use extract_all to get comprehensive entity extraction
|
|
entities = ner.extract_all(text)
|
|
|
|
# Convert string lists to dict format for consistency
|
|
for key in ["persons", "organizations", "locations", "misc"]:
|
|
if key in entities and isinstance(entities[key], list):
|
|
entities[key] = [{"text": e} if isinstance(e, str) else e for e in entities[key]]
|
|
|
|
for key in ["dates", "amounts"]:
|
|
if key in entities and isinstance(entities[key], list):
|
|
entities[key] = [{"text": e} if isinstance(e, str) else e for e in entities[key]]
|
|
|
|
logger.debug(f"Extracted entities from NER")
|
|
return entities
|
|
except Exception as e:
|
|
logger.error(f"Entity extraction failed: {e}", exc_info=True)
|
|
return {}
|
|
|
|
def _suggest_tags(
|
|
self,
|
|
document: Document,
|
|
text: str,
|
|
entities: Dict[str, Any],
|
|
) -> List[Tuple[int, float]]:
|
|
"""
|
|
Suggest relevant tags based on document content and entities.
|
|
|
|
Uses a combination of:
|
|
- Keyword matching with existing tag patterns
|
|
- ML classification if available
|
|
- Entity-based suggestions (e.g., organization -> company tag)
|
|
|
|
Returns:
|
|
List of (tag_id, confidence) tuples
|
|
"""
|
|
from documents.models import Tag
|
|
from documents.matching import match_tags
|
|
|
|
suggestions = []
|
|
|
|
try:
|
|
# Use existing matching logic
|
|
matched_tags = match_tags(document, self._get_classifier())
|
|
|
|
# Add confidence scores based on matching strength
|
|
for tag in matched_tags:
|
|
confidence = 0.85 # High confidence for matched tags
|
|
suggestions.append((tag.id, confidence))
|
|
|
|
# Additional entity-based suggestions
|
|
if entities:
|
|
# Suggest tags based on detected entities
|
|
all_tags = Tag.objects.all()
|
|
|
|
# Check for organization entities -> company/business tags
|
|
if entities.get("organizations"):
|
|
for tag in all_tags.filter(name__icontains="company"):
|
|
suggestions.append((tag.id, 0.70))
|
|
|
|
# Check for date entities -> tax/financial tags if year-end
|
|
if entities.get("dates"):
|
|
for tag in all_tags.filter(name__icontains="tax"):
|
|
suggestions.append((tag.id, 0.65))
|
|
|
|
# Remove duplicates, keep highest confidence
|
|
seen = {}
|
|
for tag_id, conf in suggestions:
|
|
if tag_id not in seen or conf > seen[tag_id]:
|
|
seen[tag_id] = conf
|
|
|
|
suggestions = [(tid, conf) for tid, conf in seen.items()]
|
|
suggestions.sort(key=lambda x: x[1], reverse=True)
|
|
|
|
logger.debug(f"Suggested {len(suggestions)} tags")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Tag suggestion failed: {e}", exc_info=True)
|
|
|
|
return suggestions
|
|
|
|
def _detect_correspondent(
|
|
self,
|
|
document: Document,
|
|
text: str,
|
|
entities: Dict[str, Any],
|
|
) -> Optional[Tuple[int, float]]:
|
|
"""
|
|
Detect correspondent based on document content and entities.
|
|
|
|
Uses:
|
|
- Organization entities from NER
|
|
- Email domains
|
|
- Existing correspondent matching patterns
|
|
|
|
Returns:
|
|
(correspondent_id, confidence) or None
|
|
"""
|
|
from documents.models import Correspondent
|
|
from documents.matching import match_correspondents
|
|
|
|
try:
|
|
# Use existing matching logic
|
|
matched_correspondents = match_correspondents(document, self._get_classifier())
|
|
|
|
if matched_correspondents:
|
|
correspondent = matched_correspondents[0]
|
|
confidence = 0.85
|
|
logger.debug(
|
|
f"Detected correspondent: {correspondent.name} "
|
|
f"(confidence: {confidence})"
|
|
)
|
|
return (correspondent.id, confidence)
|
|
|
|
# Try to match based on NER organizations
|
|
if entities.get("organizations"):
|
|
org_name = entities["organizations"][0]["text"]
|
|
# Try to find existing correspondent with similar name
|
|
correspondents = Correspondent.objects.filter(
|
|
name__icontains=org_name[:20] # First 20 chars
|
|
)
|
|
if correspondents.exists():
|
|
correspondent = correspondents.first()
|
|
confidence = 0.70
|
|
logger.debug(
|
|
f"Detected correspondent from NER: {correspondent.name} "
|
|
f"(confidence: {confidence})"
|
|
)
|
|
return (correspondent.id, confidence)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Correspondent detection failed: {e}", exc_info=True)
|
|
|
|
return None
|
|
|
|
def _classify_document_type(
|
|
self,
|
|
document: Document,
|
|
text: str,
|
|
entities: Dict[str, Any],
|
|
) -> Optional[Tuple[int, float]]:
|
|
"""
|
|
Classify document type using ML and content analysis.
|
|
|
|
Returns:
|
|
(document_type_id, confidence) or None
|
|
"""
|
|
from documents.models import DocumentType
|
|
from documents.matching import match_document_types
|
|
|
|
try:
|
|
# Use existing matching logic
|
|
matched_types = match_document_types(document, self._get_classifier())
|
|
|
|
if matched_types:
|
|
doc_type = matched_types[0]
|
|
confidence = 0.85
|
|
logger.debug(
|
|
f"Classified document type: {doc_type.name} "
|
|
f"(confidence: {confidence})"
|
|
)
|
|
return (doc_type.id, confidence)
|
|
|
|
# ML-based classification if available
|
|
classifier = self._get_classifier()
|
|
if classifier and hasattr(classifier, "predict"):
|
|
# This would need a trained model with document type labels
|
|
# For now, fall back to pattern matching
|
|
pass
|
|
|
|
except Exception as e:
|
|
logger.error(f"Document type classification failed: {e}", exc_info=True)
|
|
|
|
return None
|
|
|
|
def _suggest_storage_path(
|
|
self,
|
|
document: Document,
|
|
text: str,
|
|
scan_result: AIScanResult,
|
|
) -> Optional[Tuple[int, float]]:
|
|
"""
|
|
Suggest appropriate storage path based on document characteristics.
|
|
|
|
Returns:
|
|
(storage_path_id, confidence) or None
|
|
"""
|
|
from documents.models import StoragePath
|
|
from documents.matching import match_storage_paths
|
|
|
|
try:
|
|
# Use existing matching logic
|
|
matched_paths = match_storage_paths(document, self._get_classifier())
|
|
|
|
if matched_paths:
|
|
storage_path = matched_paths[0]
|
|
confidence = 0.80
|
|
logger.debug(
|
|
f"Suggested storage path: {storage_path.name} "
|
|
f"(confidence: {confidence})"
|
|
)
|
|
return (storage_path.id, confidence)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Storage path suggestion failed: {e}", exc_info=True)
|
|
|
|
return None
|
|
|
|
def _extract_custom_fields(
|
|
self,
|
|
document: Document,
|
|
text: str,
|
|
entities: Dict[str, Any],
|
|
) -> Dict[int, Tuple[Any, float]]:
|
|
"""
|
|
Extract values for custom fields using NER and pattern matching.
|
|
|
|
Returns:
|
|
Dictionary mapping field_id to (value, confidence)
|
|
"""
|
|
from documents.models import CustomField
|
|
|
|
extracted_fields = {}
|
|
|
|
try:
|
|
custom_fields = CustomField.objects.all()
|
|
|
|
for field in custom_fields:
|
|
# Try to extract field value based on field name and type
|
|
value, confidence = self._extract_field_value(
|
|
field, text, entities
|
|
)
|
|
|
|
if value is not None and confidence >= self.suggest_threshold:
|
|
extracted_fields[field.id] = (value, confidence)
|
|
logger.debug(
|
|
f"Extracted custom field '{field.name}': {value} "
|
|
f"(confidence: {confidence})"
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Custom field extraction failed: {e}", exc_info=True)
|
|
|
|
return extracted_fields
|
|
|
|
def _extract_field_value(
|
|
self,
|
|
field: CustomField,
|
|
text: str,
|
|
entities: Dict[str, Any],
|
|
) -> Tuple[Any, float]:
|
|
"""
|
|
Extract a single custom field value.
|
|
|
|
Returns:
|
|
(value, confidence) tuple
|
|
"""
|
|
field_name_lower = field.name.lower()
|
|
|
|
# Date fields
|
|
if "date" in field_name_lower:
|
|
dates = entities.get("dates", [])
|
|
if dates:
|
|
return (dates[0]["text"], 0.75)
|
|
|
|
# Amount/price fields
|
|
if any(keyword in field_name_lower for keyword in ["amount", "price", "cost", "total"]):
|
|
amounts = entities.get("amounts", [])
|
|
if amounts:
|
|
return (amounts[0]["text"], 0.75)
|
|
|
|
# Invoice number fields
|
|
if "invoice" in field_name_lower:
|
|
invoice_numbers = entities.get("invoice_numbers", [])
|
|
if invoice_numbers:
|
|
return (invoice_numbers[0], 0.80)
|
|
|
|
# Email fields
|
|
if "email" in field_name_lower:
|
|
emails = entities.get("emails", [])
|
|
if emails:
|
|
return (emails[0], 0.85)
|
|
|
|
# Phone fields
|
|
if "phone" in field_name_lower:
|
|
phones = entities.get("phones", [])
|
|
if phones:
|
|
return (phones[0], 0.85)
|
|
|
|
# Person name fields
|
|
if "name" in field_name_lower or "person" in field_name_lower:
|
|
persons = entities.get("persons", [])
|
|
if persons:
|
|
return (persons[0]["text"], 0.70)
|
|
|
|
# Organization fields
|
|
if "company" in field_name_lower or "organization" in field_name_lower:
|
|
orgs = entities.get("organizations", [])
|
|
if orgs:
|
|
return (orgs[0]["text"], 0.70)
|
|
|
|
return (None, 0.0)
|
|
|
|
def _suggest_workflows(
|
|
self,
|
|
document: Document,
|
|
text: str,
|
|
scan_result: AIScanResult,
|
|
) -> List[Tuple[int, float]]:
|
|
"""
|
|
Suggest relevant workflows based on document characteristics.
|
|
|
|
Returns:
|
|
List of (workflow_id, confidence) tuples
|
|
"""
|
|
from documents.models import Workflow, WorkflowTrigger
|
|
|
|
suggestions = []
|
|
|
|
try:
|
|
# Get all workflows with consumption triggers
|
|
workflows = Workflow.objects.filter(
|
|
enabled=True,
|
|
triggers__type=WorkflowTrigger.WorkflowTriggerType.CONSUMPTION,
|
|
).distinct()
|
|
|
|
for workflow in workflows:
|
|
# Evaluate workflow conditions against scan results
|
|
confidence = self._evaluate_workflow_match(
|
|
workflow, document, scan_result
|
|
)
|
|
|
|
if confidence >= self.suggest_threshold:
|
|
suggestions.append((workflow.id, confidence))
|
|
logger.debug(
|
|
f"Suggested workflow: {workflow.name} "
|
|
f"(confidence: {confidence})"
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Workflow suggestion failed: {e}", exc_info=True)
|
|
|
|
return suggestions
|
|
|
|
def _evaluate_workflow_match(
|
|
self,
|
|
workflow: Workflow,
|
|
document: Document,
|
|
scan_result: AIScanResult,
|
|
) -> float:
|
|
"""
|
|
Evaluate how well a workflow matches the document.
|
|
|
|
Returns:
|
|
Confidence score (0.0 to 1.0)
|
|
"""
|
|
# This is a simplified evaluation
|
|
# In practice, you'd check workflow triggers and conditions
|
|
|
|
confidence = 0.5 # Base confidence
|
|
|
|
# Increase confidence if document type matches workflow expectations
|
|
if scan_result.document_type and workflow.actions.exists():
|
|
confidence += 0.2
|
|
|
|
# Increase confidence if correspondent matches
|
|
if scan_result.correspondent:
|
|
confidence += 0.15
|
|
|
|
# Increase confidence if tags match
|
|
if scan_result.tags:
|
|
confidence += 0.15
|
|
|
|
return min(confidence, 1.0)
|
|
|
|
def _suggest_title(
|
|
self,
|
|
document: Document,
|
|
text: str,
|
|
entities: Dict[str, Any],
|
|
) -> Optional[str]:
|
|
"""
|
|
Generate an improved title suggestion based on document content.
|
|
|
|
Returns:
|
|
Suggested title or None
|
|
"""
|
|
try:
|
|
# Extract key information for title
|
|
title_parts = []
|
|
|
|
# Add document type if detected
|
|
if entities.get("document_type"):
|
|
title_parts.append(entities["document_type"])
|
|
|
|
# Add primary organization
|
|
orgs = entities.get("organizations", [])
|
|
if orgs:
|
|
title_parts.append(orgs[0]["text"][:30]) # Limit length
|
|
|
|
# Add date if available
|
|
dates = entities.get("dates", [])
|
|
if dates:
|
|
title_parts.append(dates[0]["text"])
|
|
|
|
if title_parts:
|
|
suggested_title = " - ".join(title_parts)
|
|
logger.debug(f"Generated title suggestion: {suggested_title}")
|
|
return suggested_title[:127] # Respect title length limit
|
|
|
|
except Exception as e:
|
|
logger.error(f"Title suggestion failed: {e}", exc_info=True)
|
|
|
|
return None
|
|
|
|
def _extract_tables(self, file_path: str) -> List[Dict[str, Any]]:
|
|
"""
|
|
Extract tables from document using advanced OCR.
|
|
|
|
Returns:
|
|
List of extracted tables with data and metadata
|
|
"""
|
|
extractor = self._get_table_extractor()
|
|
if not extractor:
|
|
return []
|
|
|
|
try:
|
|
tables = extractor.extract_tables_from_image(file_path)
|
|
logger.debug(f"Extracted {len(tables)} tables from document")
|
|
return tables
|
|
except Exception as e:
|
|
logger.error(f"Table extraction failed: {e}", exc_info=True)
|
|
return []
|
|
|
|
def apply_scan_results(
|
|
self,
|
|
document: Document,
|
|
scan_result: AIScanResult,
|
|
auto_apply: bool = True,
|
|
user_confirmed: bool = False,
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Apply AI scan results to document.
|
|
|
|
Args:
|
|
document: Document to update
|
|
scan_result: AI scan results
|
|
auto_apply: Whether to auto-apply high confidence suggestions
|
|
user_confirmed: Whether user has confirmed low-confidence changes
|
|
|
|
Returns:
|
|
Dictionary with applied changes and pending suggestions
|
|
"""
|
|
from documents.models import Tag, Correspondent, DocumentType, StoragePath
|
|
|
|
applied = {
|
|
"tags": [],
|
|
"correspondent": None,
|
|
"document_type": None,
|
|
"storage_path": None,
|
|
"custom_fields": {},
|
|
}
|
|
|
|
suggestions = {
|
|
"tags": [],
|
|
"correspondent": None,
|
|
"document_type": None,
|
|
"storage_path": None,
|
|
"custom_fields": {},
|
|
}
|
|
|
|
applied_fields = [] # Track which fields were auto-applied for webhook
|
|
|
|
try:
|
|
with transaction.atomic():
|
|
# Apply tags
|
|
for tag_id, confidence in scan_result.tags:
|
|
if confidence >= self.auto_apply_threshold and auto_apply:
|
|
tag = Tag.objects.get(pk=tag_id)
|
|
document.add_nested_tags([tag])
|
|
applied["tags"].append({"id": tag_id, "name": tag.name})
|
|
applied_fields.append("tags")
|
|
logger.info(f"Auto-applied tag: {tag.name}")
|
|
elif confidence >= self.suggest_threshold:
|
|
tag = Tag.objects.get(pk=tag_id)
|
|
suggestions["tags"].append({
|
|
"id": tag_id,
|
|
"name": tag.name,
|
|
"confidence": confidence,
|
|
})
|
|
|
|
# Apply correspondent
|
|
if scan_result.correspondent:
|
|
corr_id, confidence = scan_result.correspondent
|
|
if confidence >= self.auto_apply_threshold and auto_apply:
|
|
correspondent = Correspondent.objects.get(pk=corr_id)
|
|
document.correspondent = correspondent
|
|
applied["correspondent"] = {
|
|
"id": corr_id,
|
|
"name": correspondent.name,
|
|
}
|
|
applied_fields.append("correspondent")
|
|
logger.info(f"Auto-applied correspondent: {correspondent.name}")
|
|
elif confidence >= self.suggest_threshold:
|
|
correspondent = Correspondent.objects.get(pk=corr_id)
|
|
suggestions["correspondent"] = {
|
|
"id": corr_id,
|
|
"name": correspondent.name,
|
|
"confidence": confidence,
|
|
}
|
|
|
|
# Apply document type
|
|
if scan_result.document_type:
|
|
type_id, confidence = scan_result.document_type
|
|
if confidence >= self.auto_apply_threshold and auto_apply:
|
|
doc_type = DocumentType.objects.get(pk=type_id)
|
|
document.document_type = doc_type
|
|
applied["document_type"] = {
|
|
"id": type_id,
|
|
"name": doc_type.name,
|
|
}
|
|
applied_fields.append("document_type")
|
|
logger.info(f"Auto-applied document type: {doc_type.name}")
|
|
elif confidence >= self.suggest_threshold:
|
|
doc_type = DocumentType.objects.get(pk=type_id)
|
|
suggestions["document_type"] = {
|
|
"id": type_id,
|
|
"name": doc_type.name,
|
|
"confidence": confidence,
|
|
}
|
|
|
|
# Apply storage path
|
|
if scan_result.storage_path:
|
|
path_id, confidence = scan_result.storage_path
|
|
if confidence >= self.auto_apply_threshold and auto_apply:
|
|
storage_path = StoragePath.objects.get(pk=path_id)
|
|
document.storage_path = storage_path
|
|
applied["storage_path"] = {
|
|
"id": path_id,
|
|
"name": storage_path.name,
|
|
}
|
|
applied_fields.append("storage_path")
|
|
logger.info(f"Auto-applied storage path: {storage_path.name}")
|
|
elif confidence >= self.suggest_threshold:
|
|
storage_path = StoragePath.objects.get(pk=path_id)
|
|
suggestions["storage_path"] = {
|
|
"id": path_id,
|
|
"name": storage_path.name,
|
|
"confidence": confidence,
|
|
}
|
|
|
|
# Save document with changes
|
|
document.save()
|
|
|
|
# Send webhooks for auto-applied suggestions
|
|
if applied_fields:
|
|
try:
|
|
from documents.webhooks import send_suggestion_applied_webhook
|
|
send_suggestion_applied_webhook(
|
|
document,
|
|
scan_result.to_dict(),
|
|
applied_fields,
|
|
)
|
|
except Exception as webhook_error:
|
|
logger.warning(
|
|
f"Failed to send suggestion applied webhook: {webhook_error}",
|
|
exc_info=True,
|
|
)
|
|
|
|
# Send webhook for scan completion
|
|
try:
|
|
from documents.webhooks import send_scan_completed_webhook
|
|
auto_applied_count = len(applied_fields)
|
|
suggestions_count = sum([
|
|
len(suggestions.get("tags", [])),
|
|
1 if suggestions.get("correspondent") else 0,
|
|
1 if suggestions.get("document_type") else 0,
|
|
1 if suggestions.get("storage_path") else 0,
|
|
])
|
|
send_scan_completed_webhook(
|
|
document,
|
|
scan_result.to_dict(),
|
|
auto_applied_count,
|
|
suggestions_count,
|
|
)
|
|
except Exception as webhook_error:
|
|
logger.warning(
|
|
f"Failed to send scan completed webhook: {webhook_error}",
|
|
exc_info=True,
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Failed to apply scan results: {e}", exc_info=True)
|
|
|
|
return {
|
|
"applied": applied,
|
|
"suggestions": suggestions,
|
|
}
|
|
|
|
|
|
# Global scanner instance (lazy initialized)
|
|
_scanner_instance = None
|
|
|
|
|
|
def get_ai_scanner() -> AIDocumentScanner:
|
|
"""
|
|
Get or create the global AI scanner instance.
|
|
|
|
Returns:
|
|
AIDocumentScanner instance
|
|
"""
|
|
global _scanner_instance
|
|
if _scanner_instance is None:
|
|
_scanner_instance = AIDocumentScanner()
|
|
return _scanner_instance
|