paperless-ngx/src/documents/classifier.py

89 lines
3.2 KiB
Python
Executable file

import os
import pickle
from documents.models import Correspondent, DocumentType, Tag
from paperless import settings
def preprocess_content(content):
content = content.lower()
content = content.strip()
content = content.replace("\n", " ")
content = content.replace("\r", " ")
while content.find(" ") > -1:
content = content.replace(" ", " ")
return content
class DocumentClassifier(object):
classifier_version = None
data_vectorizer = None
tags_binarizer = None
correspondent_binarizer = None
type_binarizer = None
tags_classifier = None
correspondent_classifier = None
type_classifier = None
@staticmethod
def load_classifier():
clf = DocumentClassifier()
clf.reload()
return clf
def reload(self):
if self.classifier_version is None or os.path.getmtime(settings.MODEL_FILE) > self.classifier_version:
print("reloading classifier")
with open(settings.MODEL_FILE, "rb") as f:
self.data_vectorizer = pickle.load(f)
self.tags_binarizer = pickle.load(f)
self.correspondent_binarizer = pickle.load(f)
self.type_binarizer = pickle.load(f)
self.tags_classifier = pickle.load(f)
self.correspondent_classifier = pickle.load(f)
self.type_classifier = pickle.load(f)
self.classifier_version = os.path.getmtime(settings.MODEL_FILE)
def save_classifier(self):
with open(settings.MODEL_FILE, "wb") as f:
pickle.dump(self.data_vectorizer, f)
pickle.dump(self.tags_binarizer, f)
pickle.dump(self.correspondent_binarizer, f)
pickle.dump(self.type_binarizer, f)
pickle.dump(self.tags_classifier, f)
pickle.dump(self.correspondent_classifier, f)
pickle.dump(self.type_classifier, f)
def classify_document(self, document, classify_correspondent=False, classify_type=False, classify_tags=False):
X = self.data_vectorizer.transform([preprocess_content(document.content)])
update_fields=()
if classify_correspondent:
y_correspondent = self.correspondent_classifier.predict(X)
correspondent = self.correspondent_binarizer.inverse_transform(y_correspondent)[0]
print("Detected correspondent:", correspondent)
document.correspondent = Correspondent.objects.filter(name=correspondent).first()
update_fields = update_fields + ("correspondent",)
if classify_type:
y_type = self.type_classifier.predict(X)
type = self.type_binarizer.inverse_transform(y_type)[0]
print("Detected document type:", type)
document.document_type = DocumentType.objects.filter(name=type).first()
update_fields = update_fields + ("document_type",)
if classify_tags:
y_tags = self.tags_classifier.predict(X)
tags = self.tags_binarizer.inverse_transform(y_tags)[0]
print("Detected tags:", tags)
document.tags.add(*[Tag.objects.filter(name=t).first() for t in tags])
document.save(update_fields=update_fields)