import logging import os.path import pickle from django.core.management.base import BaseCommand from sklearn.feature_extraction.text import CountVectorizer from sklearn.multiclass import OneVsRestClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.preprocessing import MultiLabelBinarizer, LabelEncoder from documents.models import Document from ...mixins import Renderable def preprocess_content(content): content = content.lower() content = content.strip() content = content.replace("\n", " ") content = content.replace("\r", " ") while content.find(" ") > -1: content = content.replace(" ", " ") return content class Command(Renderable, BaseCommand): help = """ There is no help. """.replace(" ", "") def __init__(self, *args, **kwargs): BaseCommand.__init__(self, *args, **kwargs) def handle(self, *args, **options): data = list() labels_tags = list() labels_correspondent = list() labels_type = list() # Step 1: Extract and preprocess training data from the database. logging.getLogger(__name__).info("Gathering data from database...") for doc in Document.objects.exclude(tags__is_inbox_tag=True): data.append(preprocess_content(doc.content)) labels_type.append(doc.document_type.name if doc.document_type is not None else "-") labels_correspondent.append(doc.correspondent.name if doc.correspondent is not None else "-") tags = [tag.name for tag in doc.tags.all()] labels_tags.append(tags) # Step 2: vectorize data logging.getLogger(__name__).info("Vectorizing data...") data_vectorizer = CountVectorizer(analyzer='char', ngram_range=(1, 5), min_df=0.05) data_vectorized = data_vectorizer.fit_transform(data) tags_binarizer = MultiLabelBinarizer() labels_tags_vectorized = tags_binarizer.fit_transform(labels_tags) correspondent_binarizer = LabelEncoder() labels_correspondent_vectorized = correspondent_binarizer.fit_transform(labels_correspondent) type_binarizer = LabelEncoder() labels_type_vectorized = type_binarizer.fit_transform(labels_type) # Step 3: train the classifiers if len(tags_binarizer.classes_) > 0: logging.getLogger(__name__).info("Training tags classifier") tags_classifier = OneVsRestClassifier(MultinomialNB()) tags_classifier.fit(data_vectorized, labels_tags_vectorized) else: tags_classifier = None logging.getLogger(__name__).info("There are no tags. Not training tags classifier.") if len(correspondent_binarizer.classes_) > 0: logging.getLogger(__name__).info("Training correspondent classifier") correspondent_classifier = MultinomialNB() correspondent_classifier.fit(data_vectorized, labels_correspondent_vectorized) else: correspondent_classifier = None logging.getLogger(__name__).info("There are no correspondents. Not training correspondent classifier.") if len(type_binarizer.classes_) > 0: logging.getLogger(__name__).info("Training document type classifier") type_classifier = MultinomialNB() type_classifier.fit(data_vectorized, labels_type_vectorized) else: type_classifier = None logging.getLogger(__name__).info("There are no document types. Not training document type classifier.") models_root = os.path.abspath(os.path.join(os.path.dirname(__name__), "..", "models", "models.pickle")) logging.getLogger(__name__).info("Saving models to " + models_root + "...") with open(models_root, "wb") as f: pickle.dump(data_vectorizer, f) pickle.dump(tags_binarizer, f) pickle.dump(correspondent_binarizer, f) pickle.dump(type_binarizer, f) pickle.dump(tags_classifier, f) pickle.dump(correspondent_classifier, f) pickle.dump(type_classifier, f)