mirror of
https://github.com/paperless-ngx/paperless-ngx.git
synced 2025-12-19 21:16:56 +01:00
Backend streaming chat
This commit is contained in:
parent
4a28be233e
commit
e864a51497
5 changed files with 101 additions and 39 deletions
|
|
@ -1,6 +1,7 @@
|
|||
import logging
|
||||
|
||||
from llama_index.core import VectorStoreIndex
|
||||
from llama_index.core.prompts import PromptTemplate
|
||||
from llama_index.core.query_engine import RetrieverQueryEngine
|
||||
|
||||
from documents.models import Document
|
||||
|
|
@ -9,10 +10,19 @@ from paperless.ai.indexing import load_index
|
|||
|
||||
logger = logging.getLogger("paperless.ai.chat")
|
||||
|
||||
CHAT_PROMPT_TMPL = PromptTemplate(
|
||||
template="""Context information is below.
|
||||
---------------------
|
||||
{context_str}
|
||||
---------------------
|
||||
Given the context information and not prior knowledge, answer the query.
|
||||
Query: {query_str}
|
||||
Answer:""",
|
||||
)
|
||||
|
||||
def chat_with_documents(prompt: str, documents: list[Document]) -> str:
|
||||
|
||||
def stream_chat_with_documents(query_str: str, documents: list[Document]):
|
||||
client = AIClient()
|
||||
|
||||
index = load_index()
|
||||
|
||||
doc_ids = [doc.pk for doc in documents]
|
||||
|
|
@ -28,17 +38,36 @@ def chat_with_documents(prompt: str, documents: list[Document]) -> str:
|
|||
logger.warning("No nodes found for the given documents.")
|
||||
return "Sorry, I couldn't find any content to answer your question."
|
||||
|
||||
local_index = VectorStoreIndex.from_documents(nodes)
|
||||
local_index = VectorStoreIndex(nodes=nodes)
|
||||
retriever = local_index.as_retriever(
|
||||
similarity_top_k=3 if len(documents) == 1 else 5,
|
||||
)
|
||||
|
||||
if len(documents) == 1:
|
||||
# Just one doc — provide full content
|
||||
doc = documents[0]
|
||||
# TODO: include document metadata in the context
|
||||
context = f"TITLE: {doc.title or doc.filename}\n{doc.content or ''}"
|
||||
else:
|
||||
top_nodes = retriever.retrieve(query_str)
|
||||
context = "\n\n".join(
|
||||
f"TITLE: {node.metadata.get('title')}\n{node.text}" for node in top_nodes
|
||||
)
|
||||
|
||||
prompt = CHAT_PROMPT_TMPL.partial_format(
|
||||
context_str=context,
|
||||
query_str=query_str,
|
||||
).format(llm=client.llm)
|
||||
|
||||
query_engine = RetrieverQueryEngine.from_args(
|
||||
retriever=retriever,
|
||||
llm=client.llm,
|
||||
streaming=True,
|
||||
)
|
||||
|
||||
logger.debug("Document chat prompt: %s", prompt)
|
||||
response = query_engine.query(prompt)
|
||||
logger.debug("Document chat response: %s", response)
|
||||
return str(response)
|
||||
|
||||
response_stream = query_engine.query(prompt)
|
||||
|
||||
for chunk in response_stream.response_gen:
|
||||
yield chunk.text
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue