paperless-ngx/src/paperless/ai/llms.py

114 lines
3.5 KiB
Python
Raw Normal View History

2025-04-25 10:06:26 -07:00
import json
import httpx
from llama_index.core.base.llms.types import ChatMessage
from llama_index.core.base.llms.types import ChatResponse
from llama_index.core.base.llms.types import ChatResponseGen
from llama_index.core.base.llms.types import CompletionResponse
from llama_index.core.base.llms.types import CompletionResponseGen
from llama_index.core.base.llms.types import LLMMetadata
from llama_index.core.llms.llm import LLM
2025-04-25 10:06:26 -07:00
from llama_index.core.prompts import SelectorPromptTemplate
from pydantic import Field
class OllamaLLM(LLM):
model: str = Field(default="llama3")
base_url: str = Field(default="http://localhost:11434")
@property
def metadata(self) -> LLMMetadata:
return LLMMetadata(
model_name=self.model,
is_chat_model=False,
context_window=4096,
num_output=512,
is_function_calling_model=False,
)
def complete(self, prompt: str, **kwargs) -> CompletionResponse:
with httpx.Client(timeout=120.0) as client:
response = client.post(
f"{self.base_url}/api/generate",
json={
"model": self.model,
"prompt": prompt,
"stream": False,
},
)
response.raise_for_status()
data = response.json()
return CompletionResponse(text=data["response"])
2025-04-25 10:06:26 -07:00
def stream(self, prompt: str, **kwargs) -> CompletionResponseGen:
return self.stream_complete(prompt, **kwargs)
2025-04-25 00:59:46 -07:00
def stream_complete(
self,
2025-04-25 10:06:26 -07:00
prompt: SelectorPromptTemplate,
**kwargs,
) -> CompletionResponseGen:
headers = {"Content-Type": "application/json"}
data = {
"model": self.model,
"prompt": prompt.format(llm=self),
"stream": True,
}
with httpx.stream(
"POST",
f"{self.base_url}/api/generate",
headers=headers,
json=data,
timeout=60.0,
) as response:
response.raise_for_status()
for line in response.iter_lines():
if not line.strip():
continue
chunk = json.loads(line)
if "response" in chunk:
yield CompletionResponse(text=chunk["response"])
def chat(
self,
messages: list[ChatMessage],
2025-04-25 00:59:46 -07:00
**kwargs,
2025-04-25 10:06:26 -07:00
) -> ChatResponse: # pragma: no cover
raise NotImplementedError("chat not supported")
2025-04-25 00:59:46 -07:00
def stream_chat(
self,
messages: list[ChatMessage],
**kwargs,
) -> ChatResponseGen: # pragma: no cover
raise NotImplementedError("stream_chat not supported")
2025-04-25 00:59:46 -07:00
async def achat(
self,
messages: list[ChatMessage],
**kwargs,
) -> ChatResponse: # pragma: no cover
raise NotImplementedError("async chat not supported")
async def astream_chat(
self,
messages: list[ChatMessage],
**kwargs,
2025-04-25 00:59:46 -07:00
) -> ChatResponseGen: # pragma: no cover
raise NotImplementedError("async stream_chat not supported")
2025-04-25 00:59:46 -07:00
async def acomplete(
self,
prompt: str,
**kwargs,
) -> CompletionResponse: # pragma: no cover
raise NotImplementedError("async complete not supported")
2025-04-25 00:59:46 -07:00
async def astream_complete(
self,
prompt: str,
**kwargs,
) -> CompletionResponseGen: # pragma: no cover
raise NotImplementedError("async stream_complete not supported")