ardour/libs/ardour/parameter_descriptor.cc
2017-07-02 21:04:22 +02:00

476 lines
12 KiB
C++

/*
Copyright (C) 2014 Paul Davis
Author: David Robillard
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <algorithm>
#include <boost/algorithm/string.hpp>
#include "pbd/control_math.h"
#include "ardour/amp.h"
#include "ardour/dB.h"
#include "ardour/parameter_descriptor.h"
#include "ardour/rc_configuration.h"
#include "ardour/types.h"
#include "ardour/utils.h"
#include "pbd/i18n.h"
namespace ARDOUR {
ParameterDescriptor::ParameterDescriptor(const Evoral::Parameter& parameter)
: Evoral::ParameterDescriptor()
, key((uint32_t)-1)
, datatype(Variant::NOTHING)
, type((AutomationType)parameter.type())
, unit(NONE)
, step(0)
, smallstep(0)
, largestep(0)
, integer_step(parameter.type() >= MidiCCAutomation &&
parameter.type() <= MidiChannelPressureAutomation)
, sr_dependent(false)
, enumeration(false)
{
ScalePoints sp;
/* Note: defaults in Evoral::ParameterDescriptor */
switch((AutomationType)parameter.type()) {
case GainAutomation:
case BusSendLevel:
upper = Config->get_max_gain();
normal = 1.0f;
break;
case BusSendEnable:
normal = 1.0f;
toggled = true;
break;
case TrimAutomation:
upper = 10; // +20dB
lower = .1; // -20dB
normal = 1.0f;
logarithmic = true;
break;
case PanAzimuthAutomation:
normal = 0.5f; // there really is no _normal but this works for stereo, sort of
upper = 1.0f;
break;
case PanWidthAutomation:
lower = -1.0;
upper = 1.0;
normal = 0.0f;
break;
case RecEnableAutomation:
case RecSafeAutomation:
lower = 0.0;
upper = 1.0;
toggled = true;
break;
case FadeInAutomation:
case FadeOutAutomation:
case EnvelopeAutomation:
upper = 2.0f;
normal = 1.0f;
break;
case SoloAutomation:
case MuteAutomation:
upper = 1.0f;
normal = 0.0f;
toggled = true;
break;
case MidiCCAutomation:
case MidiPgmChangeAutomation:
case MidiChannelPressureAutomation:
case MidiNotePressureAutomation:
lower = 0.0;
normal = 0.0;
upper = 127.0;
print_fmt = "%.0f";
break;
case MidiPitchBenderAutomation:
lower = 0.0;
normal = 8192.0;
upper = 16383.0;
print_fmt = "%.0f";
break;
case PhaseAutomation:
toggled = true;
scale_points = boost::shared_ptr<ScalePoints>(new ScalePoints());
scale_points->insert (std::make_pair (_("Normal"), 0));
scale_points->insert (std::make_pair (_("Invert"), 1));
break;
case MonitoringAutomation:
enumeration = true;
integer_step = true;
lower = MonitorAuto;
upper = MonitorDisk; /* XXX bump when we add MonitorCue */
scale_points = boost::shared_ptr<ScalePoints>(new ScalePoints());
scale_points->insert (std::make_pair (_("Auto"), MonitorAuto));
scale_points->insert (std::make_pair (_("Input"), MonitorInput));
scale_points->insert (std::make_pair (_("Disk"), MonitorDisk));
break;
case SoloIsolateAutomation:
case SoloSafeAutomation:
toggled = true;
break;
default:
break;
}
update_steps();
}
ParameterDescriptor::ParameterDescriptor()
: Evoral::ParameterDescriptor()
, key((uint32_t)-1)
, datatype(Variant::NOTHING)
, type(NullAutomation)
, unit(NONE)
, step(0)
, smallstep(0)
, largestep(0)
, integer_step(false)
, sr_dependent(false)
, enumeration(false)
{}
void
ParameterDescriptor::update_steps()
{
/* sanitize flags */
if (toggled || enumeration) {
logarithmic = false;
}
if (logarithmic && (upper <= lower || lower * upper <= 0)) {
logarithmic = false;
}
if (rangesteps < 2) {
rangesteps = 0;
}
if (enumeration) {
if (!scale_points || scale_points->empty ()) {
enumeration = false;
}
}
if (integer_step) {
if (lower >= upper) {
integer_step = false;
}
}
if (unit == ParameterDescriptor::MIDI_NOTE) {
step = smallstep = 1; // semitone
largestep = 12; // octave
} else if (type == GainAutomation || type == TrimAutomation) {
/* dB_coeff_step gives a step normalized for [0, max_gain]. This is
like "slider position", so we convert from "slider position" to gain
to have the correct unit here. */
largestep = position_to_gain (dB_coeff_step(upper));
step = position_to_gain (largestep / 10.0);
smallstep = step;
} else if (rangesteps > 1) {
const float delta = upper - lower;
step = smallstep = (delta / (rangesteps - 1)); // XXX
largestep = std::min ((delta / 5.0f), 10.f * smallstep); // XXX
if (logarithmic) {
smallstep = smallstep / logf (rangesteps); // XXX
step = step / logf (rangesteps);
largestep = largestep / logf (rangesteps);
} else if (integer_step) {
smallstep = 1.0;
step = std::max(1.f, rintf (rangesteps));
largestep = std::max(1.f, rintf (largestep));
}
} else {
const float delta = upper - lower;
/* 30 happens to be the total number of steps for a fader with default
max gain of 2.0 (6 dB), so we use 30 here too for consistency. */
step = smallstep = (delta / 300.0f);
largestep = (delta / 30.0f);
if (logarithmic) {
/* Steps are linear, but we map them with pow like values (in
internal_to_interface). Thus, they are applied exponentially,
which means too few steps. So, divide to get roughly the
desired number of steps (30). This is not mathematically
precise but seems to be about right for the controls I tried.
If you're reading this, you've probably found a case where that
isn't true, and somebody needs to sit down with a piece of paper
and actually do the math. */
smallstep = smallstep / logf(30.0f);
step = step / logf(30.0f);
largestep = largestep / logf(30.0f);
} else if (integer_step) {
smallstep = 1.0;
step = std::max(1.f, rintf (step));
largestep = std::max(1.f, rintf (largestep));
}
}
}
std::string
ParameterDescriptor::midi_note_name (const uint8_t b, bool translate)
{
char buf[16];
if (b > 127) {
snprintf(buf, sizeof(buf), "%d", b);
return buf;
}
static const char* en_notes[] = {
"C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"
};
static const char* notes[] = {
S_("Note|C"),
S_("Note|C#"),
S_("Note|D"),
S_("Note|D#"),
S_("Note|E"),
S_("Note|F"),
S_("Note|F#"),
S_("Note|G"),
S_("Note|G#"),
S_("Note|A"),
S_("Note|A#"),
S_("Note|B")
};
/* MIDI note 0 is in octave -1 (in scientific pitch notation) */
const int octave = b / 12 - 1;
const size_t p = b % 12;
snprintf (buf, sizeof (buf), "%s%d", translate ? notes[p] : en_notes[p], octave);
return buf;
}
std::string
ParameterDescriptor::normalize_note_name(const std::string& name)
{
// Remove whitespaces and convert to lower case for a more resilient parser
return boost::to_lower_copy(boost::erase_all_copy(name, " "));
};
ParameterDescriptor::NameNumMap
ParameterDescriptor::build_midi_name2num()
{
NameNumMap name2num;
for (uint8_t num = 0; num < 128; num++) {
name2num[normalize_note_name(midi_note_name(num))] = num;
}
return name2num;
}
uint8_t
ParameterDescriptor::midi_note_num (const std::string& name)
{
static NameNumMap name2num = build_midi_name2num();
uint8_t num = -1; // -1 (or 255) is returned in case of failure
NameNumMap::const_iterator it = name2num.find(normalize_note_name(name));
if (it != name2num.end())
num = it->second;
return num;
}
float
ParameterDescriptor::to_interface (float val) const
{
val = std::min (upper, std::max (lower, val));
switch(type) {
case GainAutomation:
case BusSendLevel:
case EnvelopeAutomation:
val = gain_to_slider_position_with_max (val, upper);
break;
case TrimAutomation:
{
const float lower_db = accurate_coefficient_to_dB (lower);
const float range_db = accurate_coefficient_to_dB (upper) - lower_db;
val = (accurate_coefficient_to_dB (val) - lower_db) / range_db;
}
break;
case PanAzimuthAutomation:
case PanElevationAutomation:
val = val;
break;
case PanWidthAutomation:
val = .5f + val * .5f;
break;
default:
if (logarithmic) {
if (rangesteps > 1) {
val = logscale_to_position_with_steps (val, lower, upper, rangesteps);
} else {
val = logscale_to_position (val, lower, upper);
}
} else if (toggled) {
return (val - lower) / (upper - lower) >= 0.5f ? 1.f : 0.f;
} else if (integer_step) {
/* evenly-divide steps. lower,upper inclusive
* e.g. 5 integers 0,1,2,3,4 are mapped to a fader
* [0.0 ... 0.2 | 0.2 ... 0.4 | 0.4 ... 0.6 | 0.6 ... 0.8 | 0.8 ... 1.0]
* 0 1 2 3 4
* 0.1 0.3 0.5 0.7 0.9
*/
val = (val + .5f - lower) / (1.f + upper - lower);
} else {
val = (val - lower) / (upper - lower);
}
break;
}
val = std::max (0.f, std::min (1.f, val));
return val;
}
float
ParameterDescriptor::from_interface (float val) const
{
val = std::max (0.f, std::min (1.f, val));
switch(type) {
case GainAutomation:
case EnvelopeAutomation:
case BusSendLevel:
val = slider_position_to_gain_with_max (val, upper);
break;
case TrimAutomation:
{
const float lower_db = accurate_coefficient_to_dB (lower);
const float range_db = accurate_coefficient_to_dB (upper) - lower_db;
val = dB_to_coefficient (lower_db + val * range_db);
}
break;
case PanAzimuthAutomation:
case PanElevationAutomation:
val = val;
break;
case PanWidthAutomation:
val = 2.f * val - 1.f;
break;
default:
if (logarithmic) {
assert (!toggled && !integer_step); // update_steps() should prevent that.
if (rangesteps > 1) {
val = position_to_logscale_with_steps (val, lower, upper, rangesteps);
} else {
val = position_to_logscale (val, lower, upper);
}
} else if (toggled) {
val = val > 0 ? upper : lower;
} else if (integer_step) {
/* upper and lower are inclusive. use evenly-divided steps
* e.g. 5 integers 0,1,2,3,4 are mapped to a fader
* [0.0 .. 0.2 | 0.2 .. 0.4 | 0.4 .. 0.6 | 0.6 .. 0.8 | 0.8 .. 1.0]
*/
val = round (lower + val * (1.f + upper - lower) - .5f);
} else if (rangesteps > 1) {
/* similar to above, but for float controls */
val = floor (val * (rangesteps - 1.f)) / (rangesteps - 1.f); // XXX
val = val * (upper - lower) + lower;
} else {
val = val * (upper - lower) + lower;
}
break;
}
val = std::min (upper, std::max (lower, val));
return val;
}
bool
ParameterDescriptor::is_linear () const
{
if (logarithmic) {
return false;
}
switch(type) {
case GainAutomation:
case EnvelopeAutomation:
case BusSendLevel:
return false;
default:
break;
}
return true;
}
float
ParameterDescriptor::compute_delta (float from, float to) const
{
if (is_linear ()) {
return to - from;
}
if (from == 0) {
return 0;
}
return to / from;
}
float
ParameterDescriptor::apply_delta (float val, float delta) const
{
if (is_linear ()) {
return val + delta;
} else {
return val * delta;
}
}
float
ParameterDescriptor::step_enum (float val, bool prev) const
{
if (!enumeration) {
return val;
}
assert (scale_points && !scale_points->empty ());
float rv = scale_points->begin()->second;
float delta = fabsf (val - rv);
std::vector<float> avail;
for (ScalePoints::const_iterator i = scale_points->begin (); i != scale_points->end (); ++i) {
float s = i->second;
avail.push_back (s);
if (fabsf (val - s) < delta) {
rv = s;
delta = fabsf (val - s);
}
}
/* ScalePoints map is sorted by text string */
std::sort (avail.begin (), avail.end ());
std::vector<float>::const_iterator it = std::find (avail.begin (), avail.end (), rv);
assert (it != avail.end());
if (prev) {
if (it == avail.begin()) {
return rv;
}
return *(--it);
} else {
if (++it == avail.end()) {
return rv;
}
return *(it);
}
}
} // namespace ARDOUR