ardour/libs/ardour/midi_model.cc
David Robillard e55e3fde7c Comment out excessive terminal output.
Write all events (not just notes) to SMF file from MidiModel
	(just use iterator instead of hand-hacked MidiModel::write_to).
Various MIDI bug fixes.


git-svn-id: svn://localhost/ardour2/branches/3.0@3312 d708f5d6-7413-0410-9779-e7cbd77b26cf
2008-05-03 21:55:43 +00:00

911 lines
27 KiB
C++

/*
Copyright (C) 2007 Paul Davis
Written by Dave Robillard, 2007
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#define __STDC_LIMIT_MACROS 1
#include <iostream>
#include <algorithm>
#include <stdexcept>
#include <stdint.h>
#include <pbd/enumwriter.h>
#include <midi++/events.h>
#include <ardour/midi_model.h>
#include <ardour/midi_source.h>
#include <ardour/types.h>
#include <ardour/session.h>
using namespace std;
using namespace ARDOUR;
void MidiModel::write_lock() {
_lock.writer_lock();
_automation_lock.lock();
}
void MidiModel::write_unlock() {
_lock.writer_unlock();
_automation_lock.unlock();
}
void MidiModel::read_lock() const {
_lock.reader_lock();
/*_automation_lock.lock();*/
}
void MidiModel::read_unlock() const {
_lock.reader_unlock();
/*_automation_lock.unlock();*/
}
// Read iterator (const_iterator)
MidiModel::const_iterator::const_iterator(const MidiModel& model, double t)
: _model(&model)
, _is_end( (t == DBL_MAX) || model.empty())
, _locked( !_is_end)
{
//cerr << "Created MIDI iterator @ " << t << " (is end: " << _is_end << ")" << endl;
if (_is_end)
return;
model.read_lock();
_note_iter = model.notes().end();
// find first note which begins after t
for (MidiModel::Notes::const_iterator i = model.notes().begin(); i != model.notes().end(); ++i) {
if ((*i)->time() >= t) {
_note_iter = i;
break;
}
}
MidiControlIterator earliest_control(boost::shared_ptr<AutomationList>(), DBL_MAX, 0.0);
_control_iters.reserve(model.controls().size());
for (Automatable::Controls::const_iterator i = model.controls().begin();
i != model.controls().end(); ++i) {
assert(
i->first.type() == MidiCCAutomation ||
i->first.type() == MidiPgmChangeAutomation ||
i->first.type() == MidiPitchBenderAutomation ||
i->first.type() == MidiChannelAftertouchAutomation);
double x, y;
bool ret = i->second->list()->rt_safe_earliest_event_unlocked(t, DBL_MAX, x, y);
if (!ret) {
//cerr << "MIDI Iterator: CC " << i->first.id() << " (size " << i->second->list()->size()
// << ") has no events past " << t << endl;
continue;
}
assert(x >= 0);
assert(y >= i->first.min());
assert(y <= i->first.max());
const MidiControlIterator new_iter(i->second->list(), x, y);
//cerr << "MIDI Iterator: CC " << i->first.id() << " added (" << x << ", " << y << ")" << endl;
_control_iters.push_back(new_iter);
if (x < earliest_control.x) {
earliest_control = new_iter;
_control_iter = _control_iters.end();
--_control_iter;
}
}
if (_note_iter != model.notes().end()) {
_event = MIDI::Event((*_note_iter)->on_event(), false);
_active_notes.push(*_note_iter);
//cerr << " new const iterator: size active notes: " << _active_notes.size() << " is empty: " << _active_notes.empty() << endl;
++_note_iter;
}
if (earliest_control.automation_list && earliest_control.x < _event.time())
model.control_to_midi_event(_event, earliest_control);
else
_control_iter = _control_iters.end();
if (_event.size() == 0) {
//cerr << "Created MIDI iterator @ " << t << " is at end." << endl;
_is_end = true;
// FIXME: possible race condition here....
if (_locked) {
_model->read_unlock();
_locked = false;
}
} else {
//printf("New MIDI Iterator = %X @ %lf\n", _event.type(), _event.time());
}
}
MidiModel::const_iterator::~const_iterator()
{
if (_locked)
_model->read_unlock();
}
const MidiModel::const_iterator& MidiModel::const_iterator::operator++()
{
if (_is_end)
throw std::logic_error("Attempt to iterate past end of MidiModel");
/*cerr << "const_iterator::operator++: _event type:" << hex << "0x" << int(_event.type())
<< " buffer: 0x" << int(_event.buffer()[0]) << " 0x" << int(_event.buffer()[1])
<< " 0x" << int(_event.buffer()[2]) << endl;*/
if (! (_event.is_note() || _event.is_cc() || _event.is_pgm_change() || _event.is_pitch_bender() || _event.is_channel_aftertouch()) ) {
cerr << "FAILED event buffer: " << hex << int(_event.buffer()[0]) << int(_event.buffer()[1]) << int(_event.buffer()[2]) << endl;
}
assert((_event.is_note() || _event.is_cc() || _event.is_pgm_change() || _event.is_pitch_bender() || _event.is_channel_aftertouch()));
// Increment past current control event
if (!_event.is_note() && _control_iter != _control_iters.end() && _control_iter->automation_list) {
double x, y;
cerr << "control_iter x:" << _control_iter->x << " y:" << _control_iter->y << endl;
const bool ret = _control_iter->automation_list->rt_safe_earliest_event_unlocked(
_control_iter->x, DBL_MAX, x, y, false);
if (ret) {
//cerr << "Incremented " << _control_iter->automation_list->parameter().id() << " to " << x << endl;
_control_iter->x = x;
_control_iter->y = y;
} else {
//cerr << "Hit end of " << _control_iter->automation_list->parameter().id() << endl;
_control_iter->automation_list.reset();
_control_iter->x = DBL_MAX;
}
}
// Now find and point at the earliest event
const std::vector<MidiControlIterator>::iterator old_control_iter = _control_iter;
_control_iter = _control_iters.begin();
for (std::vector<MidiControlIterator>::iterator i = _control_iters.begin();
i != _control_iters.end(); ++i) {
if (i->x < _control_iter->x) {
_control_iter = i;
}
}
enum Type {NIL, NOTE_ON, NOTE_OFF, AUTOMATION};
Type type = NIL;
double t = 0;
// Next earliest note on
if (_note_iter != _model->notes().end()) {
type = NOTE_ON;
t = (*_note_iter)->time();
}
// Use the next earliest note off iff it's earlier than the note on
if (_model->note_mode() == Sustained && (! _active_notes.empty())) {
if (type == NIL || _active_notes.top()->end_time() <= (*_note_iter)->time()) {
type = NOTE_OFF;
t = _active_notes.top()->end_time();
}
}
// Use the next earliest controller iff it's earlier than the note event
if (_control_iter != _control_iters.end()
&& _control_iter->x != DBL_MAX
)//&& _control_iter != old_control_iter)
if (type == NIL || _control_iter->x < t)
type = AUTOMATION;
if (type == NOTE_ON) {
//cerr << "********** MIDI Iterator = note on" << endl;
_event = MIDI::Event((*_note_iter)->on_event(), false);
_active_notes.push(*_note_iter);
++_note_iter;
} else if (type == NOTE_OFF) {
//cerr << "********** MIDI Iterator = note off" << endl;
_event = MIDI::Event(_active_notes.top()->off_event(), false);
_active_notes.pop();
} else if (type == AUTOMATION) {
//cerr << "********** MIDI Iterator = Automation" << endl;
_model->control_to_midi_event(_event, *_control_iter);
} else {
//cerr << "********** MIDI Iterator = End" << endl;
_is_end = true;
}
assert(_is_end || _event.size()> 0);
return *this;
}
bool MidiModel::const_iterator::operator==(const const_iterator& other) const
{
if (_is_end || other._is_end)
return (_is_end == other._is_end);
else
return (_event == other._event);
}
MidiModel::const_iterator& MidiModel::const_iterator::operator=(const const_iterator& other)
{
if (_locked && _model != other._model)
_model->read_unlock();
assert( ! other._event.owns_buffer());
_model = other._model;
_event = other._event;
_active_notes = other._active_notes;
_is_end = other._is_end;
_locked = other._locked;
_note_iter = other._note_iter;
_control_iters = other._control_iters;
_control_iter = other._control_iter;
assert( ! _event.owns_buffer());
return *this;
}
// MidiModel
MidiModel::MidiModel(MidiSource *s, size_t size)
: Automatable(s->session(), "midi model")
, _notes(size)
, _note_mode(Sustained)
, _writing(false)
, _edited(false)
, _end_iter(*this, DBL_MAX)
, _next_read(UINT32_MAX)
, _read_iter(*this, DBL_MAX)
, _midi_source(s)
{
assert(_end_iter._is_end);
assert( ! _end_iter._locked);
}
/** Read events in frame range \a start .. \a start+cnt into \a dst,
* adding \a stamp_offset to each event's timestamp.
* \return number of events written to \a dst
*/
size_t MidiModel::read(MidiRingBuffer& dst, nframes_t start, nframes_t nframes,
nframes_t stamp_offset, nframes_t negative_stamp_offset) const
{
//cerr << this << " MM::read @ " << start << " frames: " << nframes << " -> " << stamp_offset << endl;
//cerr << this << " MM # notes: " << n_notes() << endl;
size_t read_events = 0;
if (start != _next_read) {
_read_iter = const_iterator(*this, (double)start);
//cerr << "Repositioning iterator from " << _next_read << " to " << start << endl;
} else {
//cerr << "Using cached iterator at " << _next_read << endl;
}
_next_read = start + nframes;
while (_read_iter != end() && _read_iter->time() < start + nframes) {
assert(_read_iter->size()> 0);
dst.write(_read_iter->time() + stamp_offset - negative_stamp_offset,
_read_iter->size(), _read_iter->buffer());
/*
cerr << this << " MidiModel::read event @ " << _read_iter->time()
<< " type: " << hex << int(_read_iter->type()) << dec
<< " note: " << int(_read_iter->note())
<< " velocity: " << int(_read_iter->velocity())
<< endl;
*/
++_read_iter;
++read_events;
}
return read_events;
}
bool MidiModel::control_to_midi_event(MIDI::Event& ev,
const MidiControlIterator& iter) const
{
switch (iter.automation_list->parameter().type()) {
case MidiCCAutomation:
if (ev.size() < 3)
ev.set_buffer((Byte*)malloc(3), true);
assert(iter.automation_list);
assert(iter.automation_list->parameter().channel() < 16);
assert(iter.automation_list->parameter().id() <= INT8_MAX);
assert(iter.y <= INT8_MAX);
ev.buffer()[0] = MIDI_CMD_CONTROL + iter.automation_list->parameter().channel();
ev.buffer()[1] = (Byte)iter.automation_list->parameter().id();
ev.buffer()[2] = (Byte)iter.y;
ev.time() = iter.x;
ev.size() = 3;
return true;
case MidiPgmChangeAutomation:
if (ev.size() < 3)
ev.set_buffer((Byte*)malloc(3), true);
assert(iter.automation_list);
assert(iter.automation_list->parameter().channel() < 16);
assert(iter.automation_list->parameter().id() <= INT8_MAX);
assert(iter.y <= INT8_MAX);
ev.buffer()[0] = MIDI_CMD_PGM_CHANGE + iter.automation_list->parameter().channel();
ev.buffer()[1] = (Byte)iter.y;
ev.buffer()[2] = 0;
ev.time() = iter.x;
ev.size() = 3;
return true;
case MidiPitchBenderAutomation:
if (ev.size() < 3)
ev.set_buffer((Byte*)malloc(3), true);
assert(iter.automation_list);
assert(iter.automation_list->parameter().channel() < 16);
assert(iter.automation_list->parameter().id() <= INT8_MAX);
assert(iter.y < (1<<14));
ev.buffer()[0] = MIDI_CMD_BENDER + iter.automation_list->parameter().channel();
ev.buffer()[1] = ((Byte)iter.y) & 0x7F; // LSB
ev.buffer()[2] = (((Byte)iter.y) >> 7) & 0x7F; // MSB
ev.time() = iter.x;
ev.size() = 3;
return true;
case MidiChannelAftertouchAutomation:
if (ev.size() < 3)
ev.set_buffer((Byte*)malloc(3), true);
assert(iter.automation_list);
assert(iter.automation_list->parameter().channel() < 16);
assert(iter.automation_list->parameter().id() <= INT8_MAX);
assert(iter.y <= INT8_MAX);
ev.buffer()[0]
= MIDI_CMD_CHANNEL_PRESSURE + iter.automation_list->parameter().channel();
ev.buffer()[1] = (Byte)iter.y;
ev.buffer()[2] = 0;
ev.time() = iter.x;
ev.size() = 3;
return true;
default:
return false;
}
}
/** Clear all events from the model.
*/
void MidiModel::clear()
{
_lock.writer_lock();
_notes.clear();
clear_automation();
_next_read = 0;
_read_iter = end();
_lock.writer_unlock();
}
/** Begin a write of events to the model.
*
* If \a mode is Sustained, complete notes with duration are constructed as note
* on/off events are received. Otherwise (Percussive), only note on events are
* stored; note off events are discarded entirely and all contained notes will
* have duration 0.
*/
void MidiModel::start_write()
{
//cerr << "MM " << this << " START WRITE, MODE = " << enum_2_string(_note_mode) << endl;
write_lock();
_writing = true;
for (int i = 0; i < 16; ++i)
_write_notes[i].clear();
_dirty_automations.clear();
write_unlock();
}
/** Finish a write of events to the model.
*
* If \a delete_stuck is true and the current mode is Sustained, note on events
* that were never resolved with a corresonding note off will be deleted.
* Otherwise they will remain as notes with duration 0.
*/
void MidiModel::end_write(bool delete_stuck)
{
write_lock();
assert(_writing);
//cerr << "MM " << this << " END WRITE: " << _notes.size() << " NOTES\n";
if (_note_mode == Sustained && delete_stuck) {
for (Notes::iterator n = _notes.begin(); n != _notes.end() ;) {
if ((*n)->duration() == 0) {
cerr << "WARNING: Stuck note lost: " << (*n)->note() << endl;
n = _notes.erase(n);
// we have to break here because erase invalidates the iterator
break;
} else {
++n;
}
}
}
for (int i = 0; i < 16; ++i) {
if (!_write_notes[i].empty()) {
cerr << "WARNING: MidiModel::end_write: Channel " << i << " has "
<< _write_notes[i].size() << " stuck notes" << endl;
}
_write_notes[i].clear();
}
for (AutomationLists::const_iterator i = _dirty_automations.begin(); i != _dirty_automations.end(); ++i) {
(*i)->Dirty.emit();
(*i)->lookup_cache().left = -1;
(*i)->search_cache().left = -1;
}
_writing = false;
write_unlock();
}
/** Append \a in_event to model. NOT realtime safe.
*
* Timestamps of events in \a buf are expected to be relative to
* the start of this model (t=0) and MUST be monotonically increasing
* and MUST be >= the latest event currently in the model.
*/
void MidiModel::append(const MIDI::Event& ev)
{
write_lock();
_edited = true;
/*cerr << "MidiModel append event type: "
<< hex << "0x" << (int)ev.type() << endl;*/
assert(_notes.empty() || ev.time() >= _notes.back()->time());
assert(_writing);
if (ev.is_note_on()) {
append_note_on_unlocked(ev.channel(), ev.time(), ev.note(),
ev.velocity());
} else if (ev.is_note_off()) {
append_note_off_unlocked(ev.channel(), ev.time(), ev.note());
} else if (ev.is_cc()) {
append_automation_event_unlocked(MidiCCAutomation, ev.channel(),
ev.time(), ev.cc_number(), ev.cc_value());
} else if (ev.is_pgm_change()) {
append_automation_event_unlocked(MidiPgmChangeAutomation, ev.channel(),
ev.time(), ev.pgm_number(), 0);
} else if (ev.is_pitch_bender()) {
append_automation_event_unlocked(MidiPitchBenderAutomation,
ev.channel(), ev.time(), ev.pitch_bender_lsb(),
ev.pitch_bender_msb());
} else if (ev.is_channel_aftertouch()) {
append_automation_event_unlocked(MidiChannelAftertouchAutomation,
ev.channel(), ev.time(), ev.channel_aftertouch(), 0);
} else {
printf("WARNING: MidiModel: Unknown event type %X\n", ev.type());
}
write_unlock();
}
void MidiModel::append_note_on_unlocked(uint8_t chan, double time,
uint8_t note_num, uint8_t velocity)
{
/*cerr << "MidiModel " << this << " chan " << (int)chan <<
" note " << (int)note_num << " on @ " << time << endl;*/
assert(chan < 16);
assert(_writing);
_edited = true;
_notes.push_back(boost::shared_ptr<Note>(new Note(chan, time, 0, note_num, velocity)));
if (_note_mode == Sustained) {
//cerr << "MM Sustained: Appending active note on " << (unsigned)(uint8_t)note_num << endl;
_write_notes[chan].push_back(_notes.size() - 1);
}/* else {
cerr << "MM Percussive: NOT appending active note on" << endl;
}*/
}
void MidiModel::append_note_off_unlocked(uint8_t chan, double time,
uint8_t note_num)
{
/*cerr << "MidiModel " << this << " chan " << (int)chan <<
" note " << (int)note_num << " off @ " << time << endl;*/
assert(chan < 16);
assert(_writing);
_edited = true;
if (_note_mode == Percussive) {
cerr << "MidiModel Ignoring note off (percussive mode)" << endl;
return;
}
/* FIXME: make _write_notes fixed size (127 noted) for speed */
/* FIXME: note off velocity for that one guy out there who actually has
* keys that send it */
bool resolved = false;
for (WriteNotes::iterator n = _write_notes[chan].begin(); n
!= _write_notes[chan].end(); ++n) {
Note& note = *_notes[*n].get();
//cerr << (unsigned)(uint8_t)note.note() << " ? " << (unsigned)note_num << endl;
if (note.note() == note_num) {
assert(time >= note.time());
note.set_duration(time - note.time());
_write_notes[chan].erase(n);
//cerr << "MM resolved note, duration: " << note.duration() << endl;
resolved = true;
break;
}
}
if (!resolved)
cerr << "MidiModel " << this << " spurious note off chan " << (int)chan
<< ", note " << (int)note_num << " @ " << time << endl;
}
void MidiModel::append_automation_event_unlocked(AutomationType type,
uint8_t chan, double time, uint8_t first_byte, uint8_t second_byte)
{
//cerr << "MidiModel " << this << " chan " << (int)chan <<
// " CC " << (int)number << " = " << (int)value << " @ " << time << endl;
assert(chan < 16);
assert(_writing);
_edited = true;
double value;
uint32_t id = 0;
switch (type) {
case MidiCCAutomation:
id = first_byte;
value = double(second_byte);
break;
case MidiChannelAftertouchAutomation:
case MidiPgmChangeAutomation:
id = 0;
value = double(first_byte);
break;
case MidiPitchBenderAutomation:
id = 0;
value = double((0x7F & second_byte) << 7 | (0x7F & first_byte));
break;
default:
assert(false);
}
Parameter param(type, id, chan);
boost::shared_ptr<AutomationControl> control = Automatable::control(param, true);
control->list()->fast_simple_add(time, value);
/*cerr << "control list size after fast simple add: " << control->list()->size() << endl;*/
}
void MidiModel::add_note_unlocked(const boost::shared_ptr<Note> note)
{
//cerr << "MidiModel " << this << " add note " << (int)note.note() << " @ " << note.time() << endl;
_edited = true;
Notes::iterator i = upper_bound(_notes.begin(), _notes.end(), note,
note_time_comparator);
_notes.insert(i, note);
}
void MidiModel::remove_note_unlocked(const boost::shared_ptr<const Note> note)
{
_edited = true;
//cerr << "MidiModel " << this << " remove note " << (int)note.note() << " @ " << note.time() << endl;
for (Notes::iterator n = _notes.begin(); n != _notes.end(); ++n) {
Note& _n = *(*n);
const Note& _note = *note;
// TODO: There is still the issue, that after restarting ardour
// persisted undo does not work, because of rounding errors in the
// event times after saving/restoring to/from MIDI files
cerr << "======================================= " << endl;
cerr << int(_n.note()) << "@" << int(_n.time()) << "[" << int(_n.channel()) << "] --" << int(_n.duration()) << "-- #" << int(_n.velocity()) << endl;
cerr << int(_note.note()) << "@" << int(_note.time()) << "[" << int(_note.channel()) << "] --" << int(_note.duration()) << "-- #" << int(_note.velocity()) << endl;
cerr << "Equal: " << bool(_n == _note) << endl;
cerr << endl << endl;
if (_n == _note) {
_notes.erase(n);
// we have to break here, because erase invalidates all iterators, ie. n itself
break;
}
}
}
/** Slow! for debugging only. */
#ifndef NDEBUG
bool MidiModel::is_sorted() const {
bool t = 0;
for (Notes::const_iterator n = _notes.begin(); n != _notes.end(); ++n)
if ((*n)->time() < t)
return false;
else
t = (*n)->time();
return true;
}
#endif
/** Start a new command.
*
* This has no side-effects on the model or Session, the returned command
* can be held on to for as long as the caller wishes, or discarded without
* formality, until apply_command is called and ownership is taken.
*/
MidiModel::DeltaCommand* MidiModel::new_delta_command(const string name)
{
DeltaCommand* cmd = new DeltaCommand(_midi_source->model(), name);
return cmd;
}
/** Apply a command.
*
* Ownership of cmd is taken, it must not be deleted by the caller.
* The command will constitute one item on the undo stack.
*/
void MidiModel::apply_command(Command* cmd)
{
_session.begin_reversible_command(cmd->name());
(*cmd)();
assert(is_sorted());
_session.commit_reversible_command(cmd);
_edited = true;
}
// MidiEditCommand
MidiModel::DeltaCommand::DeltaCommand(boost::shared_ptr<MidiModel> m,
const std::string& name)
: Command(name)
, _model(m)
, _name(name)
{
}
MidiModel::DeltaCommand::DeltaCommand(boost::shared_ptr<MidiModel> m,
const XMLNode& node)
: _model(m)
{
set_state(node);
}
void MidiModel::DeltaCommand::add(const boost::shared_ptr<Note> note)
{
//cerr << "MEC: apply" << endl;
_removed_notes.remove(note);
_added_notes.push_back(note);
}
void MidiModel::DeltaCommand::remove(const boost::shared_ptr<Note> note)
{
//cerr << "MEC: remove" << endl;
_added_notes.remove(note);
_removed_notes.push_back(note);
}
void MidiModel::DeltaCommand::operator()()
{
// This could be made much faster by using a priority_queue for added and
// removed notes (or sort here), and doing a single iteration over _model
// Need to reset iterator to drop the read lock it holds, or we'll deadlock
const bool reset_iter = (_model->_read_iter.locked());
const double iter_time = _model->_read_iter->time();
if (reset_iter)
_model->_read_iter = _model->end(); // drop read lock
assert( ! _model->_read_iter.locked());
_model->write_lock();
for (std::list< boost::shared_ptr<Note> >::iterator i = _added_notes.begin(); i != _added_notes.end(); ++i)
_model->add_note_unlocked(*i);
for (std::list< boost::shared_ptr<Note> >::iterator i = _removed_notes.begin(); i != _removed_notes.end(); ++i)
_model->remove_note_unlocked(*i);
_model->write_unlock();
if (reset_iter)
_model->_read_iter = const_iterator(*_model.get(), iter_time);
_model->ContentsChanged(); /* EMIT SIGNAL */
}
void MidiModel::DeltaCommand::undo()
{
// This could be made much faster by using a priority_queue for added and
// removed notes (or sort here), and doing a single iteration over _model
// Need to reset iterator to drop the read lock it holds, or we'll deadlock
const bool reset_iter = (_model->_read_iter.locked());
const double iter_time = _model->_read_iter->time();
if (reset_iter)
_model->_read_iter = _model->end(); // drop read lock
assert( ! _model->_read_iter.locked());
_model->write_lock();
for (std::list< boost::shared_ptr<Note> >::iterator i = _added_notes.begin(); i
!= _added_notes.end(); ++i)
_model->remove_note_unlocked(*i);
for (std::list< boost::shared_ptr<Note> >::iterator i =
_removed_notes.begin(); i != _removed_notes.end(); ++i)
_model->add_note_unlocked(*i);
_model->write_unlock();
if (reset_iter)
_model->_read_iter = const_iterator(*_model.get(), iter_time);
_model->ContentsChanged(); /* EMIT SIGNAL */
}
XMLNode & MidiModel::DeltaCommand::marshal_note(const boost::shared_ptr<Note> note)
{
XMLNode *xml_note = new XMLNode("note");
ostringstream note_str(ios::ate);
note_str << int(note->note());
xml_note->add_property("note", note_str.str());
ostringstream channel_str(ios::ate);
channel_str << int(note->channel());
xml_note->add_property("channel", channel_str.str());
ostringstream time_str(ios::ate);
time_str << int(note->time());
xml_note->add_property("time", time_str.str());
ostringstream duration_str(ios::ate);
duration_str <<(unsigned int) note->duration();
xml_note->add_property("duration", duration_str.str());
ostringstream velocity_str(ios::ate);
velocity_str << (unsigned int) note->velocity();
xml_note->add_property("velocity", velocity_str.str());
return *xml_note;
}
boost::shared_ptr<Note> MidiModel::DeltaCommand::unmarshal_note(XMLNode *xml_note)
{
unsigned int note;
istringstream note_str(xml_note->property("note")->value());
note_str >> note;
unsigned int channel;
istringstream channel_str(xml_note->property("channel")->value());
channel_str >> channel;
unsigned int time;
istringstream time_str(xml_note->property("time")->value());
time_str >> time;
unsigned int duration;
istringstream duration_str(xml_note->property("duration")->value());
duration_str >> duration;
unsigned int velocity;
istringstream velocity_str(xml_note->property("velocity")->value());
velocity_str >> velocity;
boost::shared_ptr<Note> note_ptr(new Note(channel, time, duration, note, velocity));
return note_ptr;
}
#define ADDED_NOTES_ELEMENT "added_notes"
#define REMOVED_NOTES_ELEMENT "removed_notes"
#define DELTA_COMMAND_ELEMENT "DeltaCommand"
int MidiModel::DeltaCommand::set_state(const XMLNode& delta_command)
{
if (delta_command.name() != string(DELTA_COMMAND_ELEMENT)) {
return 1;
}
_added_notes.clear();
XMLNode *added_notes = delta_command.child(ADDED_NOTES_ELEMENT);
XMLNodeList notes = added_notes->children();
transform(notes.begin(), notes.end(), back_inserter(_added_notes),
sigc::mem_fun(*this, &DeltaCommand::unmarshal_note));
_removed_notes.clear();
XMLNode *removed_notes = delta_command.child(REMOVED_NOTES_ELEMENT);
notes = removed_notes->children();
transform(notes.begin(), notes.end(), back_inserter(_removed_notes),
sigc::mem_fun(*this, &DeltaCommand::unmarshal_note));
return 0;
}
XMLNode& MidiModel::DeltaCommand::get_state()
{
XMLNode *delta_command = new XMLNode(DELTA_COMMAND_ELEMENT);
delta_command->add_property("midi_source", _model->midi_source()->id().to_s());
XMLNode *added_notes = delta_command->add_child(ADDED_NOTES_ELEMENT);
for_each(_added_notes.begin(), _added_notes.end(), sigc::compose(
sigc::mem_fun(*added_notes, &XMLNode::add_child_nocopy),
sigc::mem_fun(*this, &DeltaCommand::marshal_note)));
XMLNode *removed_notes = delta_command->add_child(REMOVED_NOTES_ELEMENT);
for_each(_removed_notes.begin(), _removed_notes.end(), sigc::compose(
sigc::mem_fun(*removed_notes, &XMLNode::add_child_nocopy),
sigc::mem_fun(*this, &DeltaCommand::marshal_note)));
return *delta_command;
}
struct EventTimeComparator {
typedef const MIDI::Event* value_type;
inline bool operator()(const MIDI::Event* a, const MIDI::Event* b) const {
return a->time() >= b->time();
}
};
/** Write the model to a MidiSource (i.e. save the model).
* This is different from manually using read to write to a source in that
* note off events are written regardless of the track mode. This is so the
* user can switch a recorded track (with note durations from some instrument)
* to percussive, save, reload, then switch it back to sustained without
* destroying the original note durations.
*/
bool MidiModel::write_to(boost::shared_ptr<MidiSource> source)
{
read_lock();
const NoteMode old_note_mode = _note_mode;
_note_mode = Sustained;
for (const_iterator i = begin(); i != end(); ++i)
source->append_event_unlocked(Frames, *i);
_note_mode = old_note_mode;
read_unlock();
_edited = false;
return true;
}
XMLNode& MidiModel::get_state()
{
XMLNode *node = new XMLNode("MidiModel");
return *node;
}