mirror of
https://github.com/Ardour/ardour.git
synced 2025-12-08 07:45:00 +01:00
git-svn-id: svn://localhost/ardour2/branches/3.0@8055 d708f5d6-7413-0410-9779-e7cbd77b26cf
680 lines
24 KiB
C++
680 lines
24 KiB
C++
/*
|
|
This software is being provided to you, the licensee, by Ville Pulkki,
|
|
under the following license. By obtaining, using and/or copying this
|
|
software, you agree that you have read, understood, and will comply
|
|
with these terms and conditions: Permission to use, copy, modify and
|
|
distribute, including the right to grant others rights to distribute
|
|
at any tier, this software and its documentation for any purpose and
|
|
without fee or royalty is hereby granted, provided that you agree to
|
|
comply with the following copyright notice and statements, including
|
|
the disclaimer, and that the same appear on ALL copies of the software
|
|
and documentation, including modifications that you make for internal
|
|
use or for distribution:
|
|
|
|
Copyright 1998 by Ville Pulkki, Helsinki University of Technology. All
|
|
rights reserved.
|
|
|
|
The software may be used, distributed, and included to commercial
|
|
products without any charges. When included to a commercial product,
|
|
the method "Vector Base Amplitude Panning" and its developer Ville
|
|
Pulkki must be referred to in documentation.
|
|
|
|
This software is provided "as is", and Ville Pulkki or Helsinki
|
|
University of Technology make no representations or warranties,
|
|
expressed or implied. By way of example, but not limitation, Helsinki
|
|
University of Technology or Ville Pulkki make no representations or
|
|
warranties of merchantability or fitness for any particular purpose or
|
|
that the use of the licensed software or documentation will not
|
|
infringe any third party patents, copyrights, trademarks or other
|
|
rights. The name of Ville Pulkki or Helsinki University of Technology
|
|
may not be used in advertising or publicity pertaining to distribution
|
|
of the software.
|
|
*/
|
|
|
|
#include <cmath>
|
|
#include <stdlib.h>
|
|
|
|
#include "ardour/vbap_speakers.h"
|
|
|
|
using namespace ARDOUR;
|
|
using namespace std;
|
|
|
|
VBAPSpeakers::Speaker::Speaker (int i, double azimuth, double elevation)
|
|
: id (i)
|
|
{
|
|
move (azimuth, elevation);
|
|
}
|
|
|
|
void
|
|
VBAPSpeakers::Speaker::move (double azimuth, double elevation)
|
|
{
|
|
angles.azi = azimuth;
|
|
angles.ele = elevation;
|
|
angles.length = 1.0;
|
|
angle_to_cart (&angles, &coords);
|
|
}
|
|
|
|
VBAPSpeakers::VBAPSpeakers ()
|
|
: _dimension (2)
|
|
{
|
|
}
|
|
|
|
VBAPSpeakers::~VBAPSpeakers ()
|
|
{
|
|
}
|
|
|
|
int
|
|
VBAPSpeakers::add_speaker (double azimuth, double elevation)
|
|
{
|
|
int id = _speakers.size();
|
|
|
|
_speakers.push_back (Speaker (id, azimuth, elevation));
|
|
update ();
|
|
|
|
return id;
|
|
}
|
|
|
|
void
|
|
VBAPSpeakers::remove_speaker (int id)
|
|
{
|
|
for (vector<Speaker>::iterator i = _speakers.begin(); i != _speakers.end(); ) {
|
|
if ((*i).id == id) {
|
|
i = _speakers.erase (i);
|
|
update ();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
VBAPSpeakers::move_speaker (int id, double direction, double elevation)
|
|
{
|
|
for (vector<Speaker>::iterator i = _speakers.begin(); i != _speakers.end(); ++i) {
|
|
if ((*i).id == id) {
|
|
(*i).move (direction, elevation);
|
|
update ();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
VBAPSpeakers::update ()
|
|
{
|
|
int dim = 2;
|
|
|
|
for (vector<Speaker>::iterator i = _speakers.begin(); i != _speakers.end(); ++i) {
|
|
if ((*i).angles.ele != 0.0) {
|
|
dim = 3;
|
|
break;
|
|
}
|
|
}
|
|
|
|
_dimension = dim;
|
|
|
|
if (_dimension == 3) {
|
|
ls_triplet_chain *ls_triplets = 0;
|
|
choose_ls_triplets (&ls_triplets);
|
|
calculate_3x3_matrixes (ls_triplets);
|
|
} else {
|
|
choose_ls_pairs ();
|
|
}
|
|
|
|
Changed (); /* EMIT SIGNAL */
|
|
}
|
|
|
|
void
|
|
VBAPSpeakers::angle_to_cart(ang_vec *from, cart_vec *to)
|
|
{
|
|
/* from angular to cartesian coordinates*/
|
|
|
|
float ang2rad = 2 * M_PI / 360;
|
|
|
|
to->x = (float) (cos((double)(from->azi * ang2rad))
|
|
* cos((double) (from->ele * ang2rad)));
|
|
to->y = (float) (sin((double)(from->azi * ang2rad))
|
|
* cos((double) (from->ele * ang2rad)));
|
|
to->z = (float) (sin((double) (from->ele * ang2rad)));
|
|
}
|
|
|
|
void
|
|
VBAPSpeakers::choose_ls_triplets(struct ls_triplet_chain **ls_triplets)
|
|
{
|
|
/* Selects the loudspeaker triplets, and
|
|
calculates the inversion matrices for each selected triplet.
|
|
A line (connection) is drawn between each loudspeaker. The lines
|
|
denote the sides of the triangles. The triangles should not be
|
|
intersecting. All crossing connections are searched and the
|
|
longer connection is erased. This yields non-intesecting triangles,
|
|
which can be used in panning.
|
|
*/
|
|
|
|
int i,j,k,l,table_size;
|
|
int n_speakers = _speakers.size ();
|
|
int connections[n_speakers][n_speakers];
|
|
float distance_table[((n_speakers * (n_speakers - 1)) / 2)];
|
|
int distance_table_i[((n_speakers * (n_speakers - 1)) / 2)];
|
|
int distance_table_j[((n_speakers * (n_speakers - 1)) / 2)];
|
|
float distance;
|
|
struct ls_triplet_chain *trip_ptr, *prev, *tmp_ptr;
|
|
|
|
if (n_speakers == 0) {
|
|
fprintf(stderr,"Number of loudspeakers is zero\nExiting\n");
|
|
exit(-1);
|
|
}
|
|
for (i = 0; i < n_speakers; i++) {
|
|
for (j = i+1; j < n_speakers; j++) {
|
|
for(k=j+1;k<n_speakers;k++) {
|
|
if (vol_p_side_lgth(i,j, k, _speakers) > MIN_VOL_P_SIDE_LGTH){
|
|
connections[i][j]=1;
|
|
connections[j][i]=1;
|
|
connections[i][k]=1;
|
|
connections[k][i]=1;
|
|
connections[j][k]=1;
|
|
connections[k][j]=1;
|
|
add_ldsp_triplet(i,j,k,ls_triplets);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*calculate distancies between all speakers and sorting them*/
|
|
table_size =(((n_speakers - 1) * (n_speakers)) / 2);
|
|
for (i = 0; i < table_size; i++) {
|
|
distance_table[i] = 100000.0;
|
|
}
|
|
|
|
for (i = 0;i < n_speakers; i++) {
|
|
for (j = i+1; j < n_speakers; j++) {
|
|
if (connections[i][j] == 1) {
|
|
distance = fabs(vec_angle(_speakers[i].coords,_speakers[j].coords));
|
|
k=0;
|
|
while(distance_table[k] < distance) {
|
|
k++;
|
|
}
|
|
for (l = table_size - 1; l > k ; l--) {
|
|
distance_table[l] = distance_table[l-1];
|
|
distance_table_i[l] = distance_table_i[l-1];
|
|
distance_table_j[l] = distance_table_j[l-1];
|
|
}
|
|
distance_table[k] = distance;
|
|
distance_table_i[k] = i;
|
|
distance_table_j[k] = j;
|
|
} else
|
|
table_size--;
|
|
}
|
|
}
|
|
|
|
/* disconnecting connections which are crossing shorter ones,
|
|
starting from shortest one and removing all that cross it,
|
|
and proceeding to next shortest */
|
|
for (i = 0; i < table_size; i++) {
|
|
int fst_ls = distance_table_i[i];
|
|
int sec_ls = distance_table_j[i];
|
|
if (connections[fst_ls][sec_ls] == 1) {
|
|
for (j = 0; j < n_speakers; j++) {
|
|
for (k = j+1; k < n_speakers; k++) {
|
|
if ((j!=fst_ls) && (k != sec_ls) && (k!=fst_ls) && (j != sec_ls)){
|
|
if (lines_intersect(fst_ls, sec_ls, j,k) == 1){
|
|
connections[j][k] = 0;
|
|
connections[k][j] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* remove triangles which had crossing sides
|
|
with smaller triangles or include loudspeakers*/
|
|
trip_ptr = *ls_triplets;
|
|
prev = 0;
|
|
while (trip_ptr != 0){
|
|
i = trip_ptr->ls_nos[0];
|
|
j = trip_ptr->ls_nos[1];
|
|
k = trip_ptr->ls_nos[2];
|
|
if (connections[i][j] == 0 ||
|
|
connections[i][k] == 0 ||
|
|
connections[j][k] == 0 ||
|
|
any_ls_inside_triplet(i,j,k) == 1 ){
|
|
if (prev != 0) {
|
|
prev->next = trip_ptr->next;
|
|
tmp_ptr = trip_ptr;
|
|
trip_ptr = trip_ptr->next;
|
|
free(tmp_ptr);
|
|
} else {
|
|
*ls_triplets = trip_ptr->next;
|
|
tmp_ptr = trip_ptr;
|
|
trip_ptr = trip_ptr->next;
|
|
free(tmp_ptr);
|
|
}
|
|
} else {
|
|
prev = trip_ptr;
|
|
trip_ptr = trip_ptr->next;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
VBAPSpeakers::any_ls_inside_triplet(int a, int b, int c)
|
|
{
|
|
/* returns 1 if there is loudspeaker(s) inside given ls triplet */
|
|
float invdet;
|
|
cart_vec *lp1, *lp2, *lp3;
|
|
float invmx[9];
|
|
int i,j;
|
|
float tmp;
|
|
bool any_ls_inside;
|
|
bool this_inside;
|
|
int n_speakers = _speakers.size();
|
|
|
|
lp1 = &(_speakers[a].coords);
|
|
lp2 = &(_speakers[b].coords);
|
|
lp3 = &(_speakers[c].coords);
|
|
|
|
/* matrix inversion */
|
|
invdet = 1.0 / ( lp1->x * ((lp2->y * lp3->z) - (lp2->z * lp3->y))
|
|
- lp1->y * ((lp2->x * lp3->z) - (lp2->z * lp3->x))
|
|
+ lp1->z * ((lp2->x * lp3->y) - (lp2->y * lp3->x)));
|
|
|
|
invmx[0] = ((lp2->y * lp3->z) - (lp2->z * lp3->y)) * invdet;
|
|
invmx[3] = ((lp1->y * lp3->z) - (lp1->z * lp3->y)) * -invdet;
|
|
invmx[6] = ((lp1->y * lp2->z) - (lp1->z * lp2->y)) * invdet;
|
|
invmx[1] = ((lp2->x * lp3->z) - (lp2->z * lp3->x)) * -invdet;
|
|
invmx[4] = ((lp1->x * lp3->z) - (lp1->z * lp3->x)) * invdet;
|
|
invmx[7] = ((lp1->x * lp2->z) - (lp1->z * lp2->x)) * -invdet;
|
|
invmx[2] = ((lp2->x * lp3->y) - (lp2->y * lp3->x)) * invdet;
|
|
invmx[5] = ((lp1->x * lp3->y) - (lp1->y * lp3->x)) * -invdet;
|
|
invmx[8] = ((lp1->x * lp2->y) - (lp1->y * lp2->x)) * invdet;
|
|
|
|
any_ls_inside = false;
|
|
for (i = 0; i < n_speakers; i++) {
|
|
if (i != a && i!=b && i != c) {
|
|
this_inside = true;
|
|
for (j = 0; j < 3; j++) {
|
|
tmp = _speakers[i].coords.x * invmx[0 + j*3];
|
|
tmp += _speakers[i].coords.y * invmx[1 + j*3];
|
|
tmp += _speakers[i].coords.z * invmx[2 + j*3];
|
|
if (tmp < -0.001) {
|
|
this_inside = false;
|
|
}
|
|
}
|
|
if (this_inside) {
|
|
any_ls_inside = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return any_ls_inside;
|
|
}
|
|
|
|
|
|
void
|
|
VBAPSpeakers::add_ldsp_triplet(int i, int j, int k, struct ls_triplet_chain **ls_triplets)
|
|
{
|
|
/* adds i,j,k triplet to triplet chain*/
|
|
|
|
struct ls_triplet_chain *trip_ptr, *prev;
|
|
trip_ptr = *ls_triplets;
|
|
prev = 0;
|
|
|
|
while (trip_ptr != 0){
|
|
prev = trip_ptr;
|
|
trip_ptr = trip_ptr->next;
|
|
}
|
|
trip_ptr = (struct ls_triplet_chain*)
|
|
malloc (sizeof (struct ls_triplet_chain));
|
|
if (prev == 0) {
|
|
*ls_triplets = trip_ptr;
|
|
} else {
|
|
prev->next = trip_ptr;
|
|
}
|
|
trip_ptr->next = 0;
|
|
trip_ptr->ls_nos[0] = i;
|
|
trip_ptr->ls_nos[1] = j;
|
|
trip_ptr->ls_nos[2] = k;
|
|
}
|
|
|
|
float
|
|
VBAPSpeakers::vec_angle(cart_vec v1, cart_vec v2)
|
|
{
|
|
float inner= ((v1.x*v2.x + v1.y*v2.y + v1.z*v2.z)/
|
|
(vec_length(v1) * vec_length(v2)));
|
|
|
|
if (inner > 1.0) {
|
|
inner= 1.0;
|
|
}
|
|
|
|
if (inner < -1.0) {
|
|
inner = -1.0;
|
|
}
|
|
|
|
return fabsf((float) acos((double) inner));
|
|
}
|
|
|
|
float
|
|
VBAPSpeakers::vec_length(cart_vec v1)
|
|
{
|
|
return (sqrt(v1.x*v1.x + v1.y*v1.y + v1.z*v1.z));
|
|
}
|
|
|
|
float
|
|
VBAPSpeakers::vec_prod(cart_vec v1, cart_vec v2)
|
|
{
|
|
return (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
|
|
}
|
|
|
|
float
|
|
VBAPSpeakers::vol_p_side_lgth(int i, int j,int k, const vector<Speaker>& speakers)
|
|
{
|
|
/* calculate volume of the parallelepiped defined by the loudspeaker
|
|
direction vectors and divide it with total length of the triangle sides.
|
|
This is used when removing too narrow triangles. */
|
|
|
|
float volper, lgth;
|
|
cart_vec xprod;
|
|
|
|
cross_prod (speakers[i].coords, speakers[j].coords, &xprod);
|
|
volper = fabsf (vec_prod(xprod, speakers[k].coords));
|
|
lgth = (fabsf (vec_angle(speakers[i].coords, speakers[j].coords))
|
|
+ fabsf (vec_angle(speakers[i].coords, speakers[k].coords))
|
|
+ fabsf (vec_angle(speakers[j].coords, speakers[k].coords)));
|
|
|
|
if (lgth > 0.00001) {
|
|
return volper / lgth;
|
|
} else {
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
void
|
|
VBAPSpeakers::cross_prod(cart_vec v1,cart_vec v2, cart_vec *res)
|
|
{
|
|
float length;
|
|
|
|
res->x = (v1.y * v2.z ) - (v1.z * v2.y);
|
|
res->y = (v1.z * v2.x ) - (v1.x * v2.z);
|
|
res->z = (v1.x * v2.y ) - (v1.y * v2.x);
|
|
|
|
length= vec_length(*res);
|
|
res->x /= length;
|
|
res->y /= length;
|
|
res->z /= length;
|
|
}
|
|
|
|
int
|
|
VBAPSpeakers::lines_intersect (int i, int j, int k, int l)
|
|
{
|
|
/* checks if two lines intersect on 3D sphere
|
|
see theory in paper Pulkki, V. Lokki, T. "Creating Auditory Displays
|
|
with Multiple Loudspeakers Using VBAP: A Case Study with
|
|
DIVA Project" in International Conference on
|
|
Auditory Displays -98. E-mail Ville.Pulkki@hut.fi
|
|
if you want to have that paper.
|
|
*/
|
|
|
|
cart_vec v1;
|
|
cart_vec v2;
|
|
cart_vec v3, neg_v3;
|
|
float dist_ij,dist_kl,dist_iv3,dist_jv3,dist_inv3,dist_jnv3;
|
|
float dist_kv3,dist_lv3,dist_knv3,dist_lnv3;
|
|
|
|
cross_prod(_speakers[i].coords,_speakers[j].coords,&v1);
|
|
cross_prod(_speakers[k].coords,_speakers[l].coords,&v2);
|
|
cross_prod(v1,v2,&v3);
|
|
|
|
neg_v3.x= 0.0 - v3.x;
|
|
neg_v3.y= 0.0 - v3.y;
|
|
neg_v3.z= 0.0 - v3.z;
|
|
|
|
dist_ij = (vec_angle(_speakers[i].coords,_speakers[j].coords));
|
|
dist_kl = (vec_angle(_speakers[k].coords,_speakers[l].coords));
|
|
dist_iv3 = (vec_angle(_speakers[i].coords,v3));
|
|
dist_jv3 = (vec_angle(v3,_speakers[j].coords));
|
|
dist_inv3 = (vec_angle(_speakers[i].coords,neg_v3));
|
|
dist_jnv3 = (vec_angle(neg_v3,_speakers[j].coords));
|
|
dist_kv3 = (vec_angle(_speakers[k].coords,v3));
|
|
dist_lv3 = (vec_angle(v3,_speakers[l].coords));
|
|
dist_knv3 = (vec_angle(_speakers[k].coords,neg_v3));
|
|
dist_lnv3 = (vec_angle(neg_v3,_speakers[l].coords));
|
|
|
|
/* if one of loudspeakers is close to crossing point, don't do anything*/
|
|
|
|
|
|
if(fabsf(dist_iv3) <= 0.01 || fabsf(dist_jv3) <= 0.01 ||
|
|
fabsf(dist_kv3) <= 0.01 || fabsf(dist_lv3) <= 0.01 ||
|
|
fabsf(dist_inv3) <= 0.01 || fabsf(dist_jnv3) <= 0.01 ||
|
|
fabsf(dist_knv3) <= 0.01 || fabsf(dist_lnv3) <= 0.01 ) {
|
|
return(0);
|
|
}
|
|
|
|
if (((fabsf(dist_ij - (dist_iv3 + dist_jv3)) <= 0.01 ) &&
|
|
(fabsf(dist_kl - (dist_kv3 + dist_lv3)) <= 0.01)) ||
|
|
((fabsf(dist_ij - (dist_inv3 + dist_jnv3)) <= 0.01) &&
|
|
(fabsf(dist_kl - (dist_knv3 + dist_lnv3)) <= 0.01 ))) {
|
|
return (1);
|
|
} else {
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
void
|
|
VBAPSpeakers::calculate_3x3_matrixes(struct ls_triplet_chain *ls_triplets)
|
|
{
|
|
/* Calculates the inverse matrices for 3D */
|
|
float invdet;
|
|
cart_vec *lp1, *lp2, *lp3;
|
|
float *invmx;
|
|
struct ls_triplet_chain *tr_ptr = ls_triplets;
|
|
int triplet_count = 0;
|
|
int triplet;
|
|
|
|
assert (tr_ptr);
|
|
|
|
/* counting triplet amount */
|
|
|
|
while (tr_ptr != 0) {
|
|
triplet_count++;
|
|
tr_ptr = tr_ptr->next;
|
|
}
|
|
|
|
triplet = 0;
|
|
|
|
_matrices.clear ();
|
|
_speaker_tuples.clear ();
|
|
|
|
_matrices.reserve (triplet_count);
|
|
_speaker_tuples.reserve (triplet_count);
|
|
|
|
while (tr_ptr != 0) {
|
|
lp1 = &(_speakers[tr_ptr->ls_nos[0]].coords);
|
|
lp2 = &(_speakers[tr_ptr->ls_nos[1]].coords);
|
|
lp3 = &(_speakers[tr_ptr->ls_nos[2]].coords);
|
|
|
|
/* matrix inversion */
|
|
invmx = tr_ptr->inv_mx;
|
|
invdet = 1.0 / ( lp1->x * ((lp2->y * lp3->z) - (lp2->z * lp3->y))
|
|
- lp1->y * ((lp2->x * lp3->z) - (lp2->z * lp3->x))
|
|
+ lp1->z * ((lp2->x * lp3->y) - (lp2->y * lp3->x)));
|
|
|
|
invmx[0] = ((lp2->y * lp3->z) - (lp2->z * lp3->y)) * invdet;
|
|
invmx[3] = ((lp1->y * lp3->z) - (lp1->z * lp3->y)) * -invdet;
|
|
invmx[6] = ((lp1->y * lp2->z) - (lp1->z * lp2->y)) * invdet;
|
|
invmx[1] = ((lp2->x * lp3->z) - (lp2->z * lp3->x)) * -invdet;
|
|
invmx[4] = ((lp1->x * lp3->z) - (lp1->z * lp3->x)) * invdet;
|
|
invmx[7] = ((lp1->x * lp2->z) - (lp1->z * lp2->x)) * -invdet;
|
|
invmx[2] = ((lp2->x * lp3->y) - (lp2->y * lp3->x)) * invdet;
|
|
invmx[5] = ((lp1->x * lp3->y) - (lp1->y * lp3->x)) * -invdet;
|
|
invmx[8] = ((lp1->x * lp2->y) - (lp1->y * lp2->x)) * invdet;
|
|
|
|
/* copy the matrix */
|
|
|
|
_matrices[triplet][0] = invmx[0];
|
|
_matrices[triplet][1] = invmx[1];
|
|
_matrices[triplet][2] = invmx[2];
|
|
_matrices[triplet][3] = invmx[3];
|
|
_matrices[triplet][4] = invmx[4];
|
|
_matrices[triplet][5] = invmx[5];
|
|
_matrices[triplet][6] = invmx[6];
|
|
_matrices[triplet][7] = invmx[7];
|
|
_matrices[triplet][8] = invmx[8];
|
|
|
|
_speaker_tuples[triplet][0] = tr_ptr->ls_nos[0];
|
|
_speaker_tuples[triplet][1] = tr_ptr->ls_nos[1];
|
|
_speaker_tuples[triplet][2] = tr_ptr->ls_nos[2];
|
|
|
|
triplet++;
|
|
|
|
tr_ptr = tr_ptr->next;
|
|
}
|
|
}
|
|
|
|
void
|
|
VBAPSpeakers::choose_ls_pairs (){
|
|
|
|
/* selects the loudspeaker pairs, calculates the inversion
|
|
matrices and stores the data to a global array
|
|
*/
|
|
const int n_speakers = _speakers.size();
|
|
int sorted_speakers[n_speakers];
|
|
bool exists[n_speakers];
|
|
double inverse_matrix[n_speakers][4];
|
|
int expected_pairs = 0;
|
|
int pair;
|
|
int speaker;
|
|
|
|
for (speaker = 0; speaker < n_speakers; ++speaker) {
|
|
exists[speaker] = false;
|
|
}
|
|
|
|
/* sort loudspeakers according their aximuth angle */
|
|
sort_2D_lss (sorted_speakers);
|
|
|
|
/* adjacent loudspeakers are the loudspeaker pairs to be used.*/
|
|
for (speaker = 0; speaker < n_speakers-1; speaker++) {
|
|
if ((_speakers[sorted_speakers[speaker+1]].angles.azi -
|
|
_speakers[sorted_speakers[speaker]].angles.azi) <= (M_PI - 0.175)){
|
|
if (calc_2D_inv_tmatrix( _speakers[sorted_speakers[speaker]].angles.azi,
|
|
_speakers[sorted_speakers[speaker+1]].angles.azi,
|
|
inverse_matrix[speaker]) != 0){
|
|
exists[speaker] = true;
|
|
expected_pairs++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (((6.283 - _speakers[sorted_speakers[n_speakers-1]].angles.azi)
|
|
+_speakers[sorted_speakers[0]].angles.azi) <= (M_PI - 0.175)) {
|
|
if(calc_2D_inv_tmatrix(_speakers[sorted_speakers[n_speakers-1]].angles.azi,
|
|
_speakers[sorted_speakers[0]].angles.azi,
|
|
inverse_matrix[n_speakers-1]) != 0) {
|
|
exists[n_speakers-1] = true;
|
|
expected_pairs++;
|
|
}
|
|
}
|
|
|
|
pair = 0;
|
|
|
|
_matrices.clear ();
|
|
_speaker_tuples.clear ();
|
|
|
|
_matrices.reserve (expected_pairs);
|
|
_speaker_tuples.reserve (expected_pairs);
|
|
|
|
for (speaker = 0; speaker < n_speakers - 1; speaker++) {
|
|
if (exists[speaker]) {
|
|
_matrices[pair][0] = inverse_matrix[speaker][0];
|
|
_matrices[pair][1] = inverse_matrix[speaker][1];
|
|
_matrices[pair][2] = inverse_matrix[speaker][2];
|
|
_matrices[pair][3] = inverse_matrix[speaker][3];
|
|
|
|
_speaker_tuples[pair][0] = sorted_speakers[speaker];
|
|
_speaker_tuples[pair][1] = sorted_speakers[speaker+1];
|
|
|
|
pair++;
|
|
}
|
|
}
|
|
|
|
if (exists[n_speakers-1]) {
|
|
_matrices[pair][0] = inverse_matrix[speaker][0];
|
|
_matrices[pair][1] = inverse_matrix[speaker][1];
|
|
_matrices[pair][2] = inverse_matrix[speaker][2];
|
|
_matrices[pair][3] = inverse_matrix[speaker][3];
|
|
|
|
_speaker_tuples[pair][0] = sorted_speakers[n_speakers-1];
|
|
_speaker_tuples[pair][1] = sorted_speakers[0];
|
|
}
|
|
}
|
|
|
|
void
|
|
VBAPSpeakers::sort_2D_lss (int* sorted_speakers)
|
|
{
|
|
int speaker, other_speaker, index;
|
|
float tmp, tmp_azi;
|
|
int n_speakers = _speakers.size();
|
|
|
|
/* Transforming angles between -180 and 180 */
|
|
for (speaker = 0; speaker < n_speakers; speaker++) {
|
|
angle_to_cart(&_speakers[speaker].angles, &_speakers[speaker].coords);
|
|
_speakers[speaker].angles.azi = (float) acos((double) _speakers[speaker].coords.x);
|
|
if (fabsf(_speakers[speaker].coords.y) <= 0.001) {
|
|
tmp = 1.0;
|
|
} else {
|
|
tmp = _speakers[speaker].coords.y / fabsf(_speakers[speaker].coords.y);
|
|
}
|
|
_speakers[speaker].angles.azi *= tmp;
|
|
}
|
|
|
|
for (speaker = 0; speaker < n_speakers; speaker++){
|
|
tmp = 2000;
|
|
for (other_speaker = 0 ; other_speaker < n_speakers; other_speaker++){
|
|
if (_speakers[other_speaker].angles.azi <= tmp){
|
|
tmp=_speakers[other_speaker].angles.azi;
|
|
index = other_speaker;
|
|
}
|
|
}
|
|
sorted_speakers[speaker] = index;
|
|
tmp_azi = (_speakers[index].angles.azi);
|
|
_speakers[index].angles.azi = (tmp_azi + (float) 4000.0);
|
|
}
|
|
|
|
for (speaker = 0 ; speaker < n_speakers; ++speaker) {
|
|
tmp_azi = _speakers[speaker].angles.azi;
|
|
_speakers[speaker].angles.azi = (tmp_azi - (float) 4000.0);
|
|
}
|
|
}
|
|
|
|
int
|
|
VBAPSpeakers::calc_2D_inv_tmatrix (double azi1, double azi2, double* inverse_matrix)
|
|
{
|
|
double x1,x2,x3,x4;
|
|
double det;
|
|
|
|
x1 = cos (azi1);
|
|
x2 = sin (azi1);
|
|
x3 = cos (azi2);
|
|
x4 = sin (azi2);
|
|
det = (x1 * x4) - ( x3 * x2 );
|
|
|
|
if (fabs(det) <= 0.001) {
|
|
|
|
inverse_matrix[0] = 0.0;
|
|
inverse_matrix[1] = 0.0;
|
|
inverse_matrix[2] = 0.0;
|
|
inverse_matrix[3] = 0.0;
|
|
|
|
return 0;
|
|
|
|
} else {
|
|
|
|
inverse_matrix[0] = x4 / det;
|
|
inverse_matrix[1] = -x3 / det;
|
|
inverse_matrix[2] = -x2 / det;
|
|
inverse_matrix[3] = x1 / det;
|
|
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
|