ardour/libs/temporal/temporal/beats.h
Paul Davis f4490f54c5 change Timecode::BBT_Time to use Temporal namespace, plus a couple of other minor changes to enable compilation
This still uses the tempo map object in libs/ardour, not the new one in libs/temporal, and isn't likely to be functional
(though it could be)
2021-08-13 12:51:28 -06:00

554 lines
14 KiB
C++

/*
* Copyright (C) 2017-2018 Paul Davis <paul@linuxaudiosystems.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef TEMPORAL_BEATS_HPP
#define TEMPORAL_BEATS_HPP
#include <cassert>
#include <float.h>
#include <math.h>
#include <stdint.h>
#include <stdlib.h>
#include <iostream>
#include <limits>
#include "pbd/compose.h"
#include "pbd/failed_constructor.h"
#include "pbd/string_convert.h"
#include "temporal/visibility.h"
#include "temporal/types.h"
namespace ARDOUR {
class Variant; /* Can stay since LV2 has no way to exchange beats as anything except double */
/* these all need fixing to not use ::to_double() */
class TempoMap;
class Track;
class MidiStretch;
class MidiModel;
class AutomationList;
class MidiSource;
class MidiRegion;
/* these use ::to_double() but should be removed */
class DoubleBeatsSamplesConverter;
}
namespace Evoral {
template<typename T> class Sequence;
}
/* XXX hack friends for ::do_double() access ... remove */
class QuantizeDialog;
class NoteDrag;
class NoteCreateDrag;
namespace Temporal {
/** Musical time in beats. */
class /*LIBTEMPORAL_API*/ Beats {
public:
LIBTEMPORAL_API static const int32_t PPQN = Temporal::ticks_per_beat;
Beats() : _beats(0), _ticks(0) {}
Beats(const Beats& other) : _beats(other._beats), _ticks(other._ticks) {}
/** Normalize so ticks is within PPQN. */
void normalize() {
// First, fix negative ticks with positive beats
while (_beats > 0 && _ticks < 0) {
--_beats;
_ticks += PPQN;
}
// Now fix positive ticks with negative beats
while (_beats < 0 && _ticks > 0) {
++_beats;
_ticks -= PPQN;
}
assert ((_beats < 0 && _ticks <= 0) || (_beats > 0 && _ticks >= 0) || _beats == 0);
// Work with positive beats and ticks to normalize
const int32_t sign = _beats < 0 ? -1 : _ticks < 0 ? -1 : 1;
int32_t beats = abs(_beats);
int32_t ticks = abs(_ticks);
// Fix ticks greater than 1 beat
while (ticks >= PPQN) {
++beats;
ticks -= PPQN;
}
// Set fields with appropriate sign
_beats = sign * beats;
_ticks = sign * ticks;
}
/** Create from a precise beats:ticks pair. */
explicit Beats(int32_t b, int32_t t) : _beats(b), _ticks(t) {
normalize();
}
/** Create from a real number of beats. */
static Beats from_double (double beats) {
double whole;
const double frac = modf (beats, &whole);
return Beats (whole, (int32_t) rint (frac * PPQN));
}
/** Create from an integer number of beats. */
static Beats beats(int32_t beats) {
return Beats(beats, 0);
}
/** Create from ticks at the standard PPQN. */
static Beats ticks(int32_t ticks) {
return Beats(0, ticks);
}
/** Create from ticks at a given rate.
*
* Note this can also be used to create from frames by setting ppqn to the
* number of samples per beat. Note the resulting Beats will, like all
* others, have the default PPQN, so this is a potentially lossy
* conversion.
*/
static Beats ticks_at_rate(int64_t ticks, uint32_t ppqn) {
return Beats(ticks / ppqn, (ticks % ppqn) * PPQN / ppqn);
}
static int64_t make_ticks (Beats const & b) { return b.get_beats() * ticks_per_beat + b.get_ticks(); }
int64_t to_ticks() const { return (int64_t)_beats * PPQN + _ticks; }
int64_t to_ticks(uint32_t ppqn) const { return (int64_t)_beats * ppqn + (_ticks * ppqn / PPQN); }
int32_t get_beats() const { return _beats; }
int32_t get_ticks() const { return _ticks; }
Beats& operator=(double time) {
double whole;
const double frac = modf(time, &whole);
_beats = whole;
_ticks = frac * PPQN;
return *this;
}
Beats& operator=(const Beats& other) {
_beats = other._beats;
_ticks = other._ticks;
return *this;
}
Beats round_to_beat() const {
return (_ticks >= (PPQN/2)) ? Beats (_beats + 1, 0) : Beats (_beats, 0);
}
Beats round_up_to_beat() const {
return (_ticks == 0) ? *this : Beats(_beats + 1, 0);
}
Beats round_down_to_beat() const {
return Beats(_beats, 0);
}
Beats prev_beat() const {
/* always moves backwards even if currently on beat */
return Beats (_beats-1, 0);
}
Beats next_beat() const {
/* always moves forwards even if currently on beat */
return Beats (_beats+1, 0);
}
Beats round_to_subdivision (int subdivision, RoundMode dir) const {
uint32_t ticks = to_ticks();
const uint32_t ticks_one_subdivisions_worth = ticks_per_beat / subdivision;
uint32_t mod = ticks % ticks_one_subdivisions_worth;
uint32_t beats = _beats;
if (dir > 0) {
if (mod == 0 && dir == RoundUpMaybe) {
/* right on the subdivision, which is fine, so do nothing */
} else if (mod == 0) {
/* right on the subdivision, so the difference is just the subdivision ticks */
ticks += ticks_one_subdivisions_worth;
} else {
/* not on subdivision, compute distance to next subdivision */
ticks += ticks_one_subdivisions_worth - mod;
}
// NOTE: this code intentionally limits the rounding so we don't advance to the next beat.
// For the purposes of "jump-to-next-subdivision", we DO want to advance to the next beat.
// And since the "prev" direction DOES move beats, I assume this code is unintended.
// But I'm keeping it around, until we determine there are no terrible consequences.
// if (ticks >= Temporal::ticks_per_beat) {
// ticks -= Temporal::ticks_per_beat;
// }
} else if (dir < 0) {
/* round to previous (or same iff dir == RoundDownMaybe) */
uint32_t difference = ticks % ticks_one_subdivisions_worth;
if (difference == 0 && dir == RoundDownAlways) {
/* right on the subdivision, but force-rounding down,
so the difference is just the subdivision ticks */
difference = ticks_one_subdivisions_worth;
}
if (ticks < difference) {
ticks = ticks_per_beat - ticks;
} else {
ticks -= difference;
}
} else {
/* round to nearest */
double rem;
/* compute the distance to the previous and next subdivision */
if ((rem = fmod ((double) ticks, (double) ticks_one_subdivisions_worth)) > ticks_one_subdivisions_worth/2.0) {
/* closer to the next subdivision, so shift forward */
ticks = lrint (ticks + (ticks_one_subdivisions_worth - rem));
//DEBUG_TRACE (DEBUG::SnapBBT, string_compose ("moved forward to %1\n", ticks));
if (ticks > ticks_per_beat) {
++beats;
ticks -= ticks_per_beat;
//DEBUG_TRACE (DEBUG::SnapBBT, string_compose ("fold beat to %1\n", beats));
}
} else if (rem > 0) {
/* closer to previous subdivision, so shift backward */
if (rem > ticks) {
if (beats == 0) {
/* can't go backwards past zero, so ... */
return *this;
}
/* step back to previous beat */
--beats;
ticks = lrint (ticks_per_beat - rem);
//DEBUG_TRACE (DEBUG::SnapBBT, string_compose ("step back beat to %1\n", beats));
} else {
ticks = lrint (ticks - rem);
//DEBUG_TRACE (DEBUG::SnapBBT, string_compose ("moved backward to %1\n", ticks));
}
} else {
/* on the subdivision, do nothing */
}
}
return Beats::ticks (ticks);
}
Beats snap_to (Temporal::Beats const & snap) const {
const double snap_time = snap.to_double();
return Beats::from_double (ceil(to_double() / snap_time) * snap_time);
}
Beats abs () const {
return Beats (::abs (_beats), ::abs (_ticks));
}
Beats diff (Beats const & other) const {
if (other > *this) {
return other - *this;
}
return *this - other;
}
inline bool operator==(const Beats& b) const {
return _beats == b._beats && _ticks == b._ticks;
}
inline bool operator==(double t) const {
/* Acceptable tolerance is 1 tick. */
return fabs(to_double() - t) <= (1.0 / PPQN);
}
inline bool operator==(int beats) const {
return _beats == beats;
}
inline bool operator!=(const Beats& b) const {
return !operator==(b);
}
inline bool operator<(const Beats& b) const {
return _beats < b._beats || (_beats == b._beats && _ticks < b._ticks);
}
inline bool operator<=(const Beats& b) const {
return _beats < b._beats || (_beats == b._beats && _ticks <= b._ticks);
}
inline bool operator>(const Beats& b) const {
return _beats > b._beats || (_beats == b._beats && _ticks > b._ticks);
}
inline bool operator>=(const Beats& b) const {
return _beats > b._beats || (_beats == b._beats && _ticks >= b._ticks);
}
inline bool operator<(double b) const {
/* Acceptable tolerance is 1 tick. */
const double time = to_double();
if (fabs(time - b) <= (1.0 / PPQN)) {
return false; /* Effectively identical. */
} else {
return time < b;
}
}
inline bool operator<=(double b) const {
return operator==(b) || operator<(b);
}
inline bool operator>(double b) const {
/* Acceptable tolerance is 1 tick. */
const double time = to_double();
if (fabs(time - b) <= (1.0 / PPQN)) {
return false; /* Effectively identical. */
} else {
return time > b;
}
}
inline bool operator>=(double b) const {
return operator==(b) || operator>(b);
}
Beats operator+(const Beats& b) const {
return Beats(_beats + b._beats, _ticks + b._ticks);
}
Beats operator-(const Beats& b) const {
return Beats(_beats - b._beats, _ticks - b._ticks);
}
Beats operator+(double d) const {
return Beats(to_double() + d);
}
Beats operator-(double d) const {
return Beats(to_double() - d);
}
Beats operator+(int b) const {
return Beats (_beats + b, _ticks);
}
Beats operator-(int b) const {
return Beats (_beats - b, _ticks);
}
Beats& operator+=(int b) {
_beats += b;
return *this;
}
Beats& operator-=(int b) {
_beats -= b;
return *this;
}
Beats operator-() const {
/* must avoid normalization here, which will convert a negative
value into a valid beat position before zero, which is not
we want here.
*/
Beats b (_beats, _ticks);
b._beats = -b._beats;
b._ticks = -b._ticks;
return b;
}
template<typename Number>
Beats operator*(Number factor) const {
return ticks ((_beats * PPQN + _ticks) * factor);
}
template<typename Number>
Beats operator/(Number factor) const {
return ticks ((_beats * PPQN + _ticks) / factor);
}
Beats operator% (Beats const & b) {
return Beats::ticks (to_ticks() % b.to_ticks());
}
Beats operator%= (Beats const & b) {
const Beats B (Beats::ticks (to_ticks() % b.to_ticks()));
_beats = B._beats;
_ticks = B._ticks;
return *this;
/* avoids calling ::to_double() to compute ratios of two Beat distances
*/
double operator/ (Beats const & other) {
return (double) to_ticks() / (double) other.to_ticks();
}
Beats& operator+=(const Beats& b) {
_beats += b._beats;
_ticks += b._ticks;
normalize();
return *this;
}
Beats& operator-=(const Beats& b) {
_beats -= b._beats;
_ticks -= b._ticks;
normalize();
return *this;
}
bool operator!() const { return _beats == 0 && _ticks == 0; }
operator bool () const { return _beats != 0 || _ticks != 0; }
static Beats one_tick() { return Beats(0, 1); }
private:
int32_t _beats;
int32_t _ticks;
/* almost nobody should ever be allowed to use this method */
friend class TempoPoint;
friend class ARDOUR::TempoMap;
friend class ARDOUR::Track;
friend class ARDOUR::Variant;
friend class ARDOUR::MidiStretch;
friend class ARDOUR::MidiModel;
friend class ARDOUR::AutomationList;
friend class ARDOUR::MidiSource;
friend class ARDOUR::MidiRegion;
friend class ARDOUR::DoubleBeatsSamplesConverter;
friend class ::QuantizeDialog;
friend class ::NoteDrag;
friend class ::NoteCreateDrag;
double to_double() const { return (double)_beats + (_ticks / (double)PPQN); }
/* this needs to exist because Evoral::Sequence is templated, and some
* other possible template types cannot provide ::from_double
*/
friend class Evoral::Sequence<Beats>;
explicit Beats (double beats) {
double whole;
const double frac = modf (beats, &whole);
_beats = whole;
_ticks = frac * PPQN;
}
};
/*
TIL, several horrible hours later, that sometimes the compiler looks in the
namespace of a type (Temporal::Beats in this case) for an operator, and
does *NOT* look in the global namespace.
C++ is proof that hell exists and we are living in it. In any case, move
these to the global namespace and PBD::Property's loopy
virtual-method-in-a-template will bite you.
*/
inline std::ostream&
operator<<(std::ostream& os, const Beats& t)
{
os << t.get_beats() << ':' << t.get_ticks();
return os;
}
inline std::istream&
operator>>(std::istream& istr, Beats& b)
{
int32_t beats, ticks;
char d; /* delimiter, whatever it is */
istr >> beats >> d >> ticks;
b = Beats (beats, ticks);
return istr;
}
} // namespace Temporal
namespace PBD {
namespace DEBUG {
LIBTEMPORAL_API extern uint64_t Beats;
}
}
namespace std {
template<>
struct numeric_limits<Temporal::Beats> {
static Temporal::Beats lowest() {
return Temporal::Beats(std::numeric_limits<int32_t>::min(), std::numeric_limits<int32_t>::min());
}
/* We don't define min() since this has different behaviour for integral and floating point types,
but Beats is used as both. Better to avoid providing a min at all
than a confusing one. */
static Temporal::Beats max() {
return Temporal::Beats(std::numeric_limits<int32_t>::max(), Temporal::Beats::PPQN-1);
}
};
}
namespace PBD {
namespace DEBUG {
LIBTEMPORAL_API extern uint64_t Beats;
}
template<>
inline bool to_string (Temporal::Beats val, std::string & str)
{
std::ostringstream ostr;
ostr << val;
str = ostr.str();
return true;
}
template<>
inline bool string_to (std::string const & str, Temporal::Beats & val)
{
std::istringstream istr (str);
istr >> val;
return (bool) istr;
}
} /* end namsepace PBD */
#endif // TEMPORAL_BEATS_HPP