mirror of
https://github.com/Ardour/ardour.git
synced 2025-12-08 07:45:00 +01:00
455 lines
9.3 KiB
C++
455 lines
9.3 KiB
C++
/*
|
|
Copyright (C) 2001-2003 Paul Davis
|
|
|
|
Contains ideas derived from "Constrained Cubic Spline Interpolation"
|
|
by CJC Kruger (www.korf.co.uk/spline.pdf).
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
$Id$
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <float.h>
|
|
#include <cmath>
|
|
#include <climits>
|
|
#include <cfloat>
|
|
#include <cmath>
|
|
|
|
#include <glibmm/thread.h>
|
|
#include <sigc++/bind.h>
|
|
|
|
#include "ardour/curve.h"
|
|
|
|
#include "i18n.h"
|
|
|
|
using namespace std;
|
|
using namespace ARDOUR;
|
|
using namespace sigc;
|
|
using namespace PBD;
|
|
|
|
sigc::signal<void, Curve*> Curve::CurveCreated;
|
|
|
|
Curve::Curve (double minv, double maxv, double canv, bool nostate)
|
|
: AutomationList (canv, nostate)
|
|
{
|
|
min_yval = minv;
|
|
max_yval = maxv;
|
|
CurveCreated(this);
|
|
}
|
|
|
|
Curve::Curve (const Curve& other)
|
|
: AutomationList (other)
|
|
{
|
|
min_yval = other.min_yval;
|
|
max_yval = other.max_yval;
|
|
CurveCreated(this);
|
|
}
|
|
|
|
Curve::Curve (const Curve& other, double start, double end)
|
|
: AutomationList (other, start, end)
|
|
{
|
|
min_yval = other.min_yval;
|
|
max_yval = other.max_yval;
|
|
CurveCreated(this);
|
|
}
|
|
|
|
Curve::~Curve ()
|
|
{
|
|
}
|
|
|
|
void
|
|
Curve::solve ()
|
|
{
|
|
uint32_t npoints;
|
|
|
|
if (!_dirty) {
|
|
return;
|
|
}
|
|
|
|
if ((npoints = events.size()) > 2) {
|
|
|
|
/* Compute coefficients needed to efficiently compute a constrained spline
|
|
curve. See "Constrained Cubic Spline Interpolation" by CJC Kruger
|
|
(www.korf.co.uk/spline.pdf) for more details.
|
|
*/
|
|
|
|
double x[npoints];
|
|
double y[npoints];
|
|
uint32_t i;
|
|
AutomationEventList::iterator xx;
|
|
|
|
for (i = 0, xx = events.begin(); xx != events.end(); ++xx, ++i) {
|
|
x[i] = (double) (*xx)->when;
|
|
y[i] = (double) (*xx)->value;
|
|
}
|
|
|
|
double lp0, lp1, fpone;
|
|
|
|
lp0 =(x[1] - x[0])/(y[1] - y[0]);
|
|
lp1 = (x[2] - x[1])/(y[2] - y[1]);
|
|
|
|
if (lp0*lp1 < 0) {
|
|
fpone = 0;
|
|
} else {
|
|
fpone = 2 / (lp1 + lp0);
|
|
}
|
|
|
|
double fplast = 0;
|
|
|
|
for (i = 0, xx = events.begin(); xx != events.end(); ++xx, ++i) {
|
|
|
|
CurvePoint* cp = dynamic_cast<CurvePoint*>(*xx);
|
|
|
|
if (cp == 0) {
|
|
fatal << _("programming error: ")
|
|
<< X_("non-CurvePoint event found in event list for a Curve")
|
|
<< endmsg;
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
double xdelta; /* gcc is wrong about possible uninitialized use */
|
|
double xdelta2; /* ditto */
|
|
double ydelta; /* ditto */
|
|
double fppL, fppR;
|
|
double fpi;
|
|
|
|
if (i > 0) {
|
|
xdelta = x[i] - x[i-1];
|
|
xdelta2 = xdelta * xdelta;
|
|
ydelta = y[i] - y[i-1];
|
|
}
|
|
|
|
/* compute (constrained) first derivatives */
|
|
|
|
if (i == 0) {
|
|
|
|
/* first segment */
|
|
|
|
fplast = ((3 * (y[1] - y[0]) / (2 * (x[1] - x[0]))) - (fpone * 0.5));
|
|
|
|
/* we don't store coefficients for i = 0 */
|
|
|
|
continue;
|
|
|
|
} else if (i == npoints - 1) {
|
|
|
|
/* last segment */
|
|
|
|
fpi = ((3 * ydelta) / (2 * xdelta)) - (fplast * 0.5);
|
|
|
|
} else {
|
|
|
|
/* all other segments */
|
|
|
|
double slope_before = ((x[i+1] - x[i]) / (y[i+1] - y[i]));
|
|
double slope_after = (xdelta / ydelta);
|
|
|
|
if (slope_after * slope_before < 0.0) {
|
|
/* slope changed sign */
|
|
fpi = 0.0;
|
|
} else {
|
|
fpi = 2 / (slope_before + slope_after);
|
|
}
|
|
|
|
}
|
|
|
|
/* compute second derivative for either side of control point `i' */
|
|
|
|
fppL = (((-2 * (fpi + (2 * fplast))) / (xdelta))) +
|
|
((6 * ydelta) / xdelta2);
|
|
|
|
fppR = (2 * ((2 * fpi) + fplast) / xdelta) -
|
|
((6 * ydelta) / xdelta2);
|
|
|
|
/* compute polynomial coefficients */
|
|
|
|
double b, c, d;
|
|
|
|
d = (fppR - fppL) / (6 * xdelta);
|
|
c = ((x[i] * fppL) - (x[i-1] * fppR))/(2 * xdelta);
|
|
|
|
double xim12, xim13;
|
|
double xi2, xi3;
|
|
|
|
xim12 = x[i-1] * x[i-1]; /* "x[i-1] squared" */
|
|
xim13 = xim12 * x[i-1]; /* "x[i-1] cubed" */
|
|
xi2 = x[i] * x[i]; /* "x[i] squared" */
|
|
xi3 = xi2 * x[i]; /* "x[i] cubed" */
|
|
|
|
b = (ydelta - (c * (xi2 - xim12)) - (d * (xi3 - xim13))) / xdelta;
|
|
|
|
/* store */
|
|
|
|
cp->coeff[0] = y[i-1] - (b * x[i-1]) - (c * xim12) - (d * xim13);
|
|
cp->coeff[1] = b;
|
|
cp->coeff[2] = c;
|
|
cp->coeff[3] = d;
|
|
|
|
fplast = fpi;
|
|
}
|
|
|
|
}
|
|
|
|
_dirty = false;
|
|
}
|
|
|
|
bool
|
|
Curve::rt_safe_get_vector (double x0, double x1, float *vec, int32_t veclen)
|
|
{
|
|
Glib::Mutex::Lock lm (lock, Glib::TRY_LOCK);
|
|
|
|
if (!lm.locked()) {
|
|
return false;
|
|
} else {
|
|
_get_vector (x0, x1, vec, veclen);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void
|
|
Curve::get_vector (double x0, double x1, float *vec, int32_t veclen)
|
|
{
|
|
Glib::Mutex::Lock lm (lock);
|
|
_get_vector (x0, x1, vec, veclen);
|
|
}
|
|
|
|
void
|
|
Curve::_get_vector (double x0, double x1, float *vec, int32_t veclen)
|
|
{
|
|
double rx, dx, lx, hx, max_x, min_x;
|
|
int32_t i;
|
|
int32_t original_veclen;
|
|
int32_t npoints;
|
|
|
|
if ((npoints = events.size()) == 0) {
|
|
for (i = 0; i < veclen; ++i) {
|
|
vec[i] = default_value;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* events is now known not to be empty */
|
|
|
|
max_x = events.back()->when;
|
|
min_x = events.front()->when;
|
|
|
|
lx = max (min_x, x0);
|
|
|
|
if (x1 < 0) {
|
|
x1 = events.back()->when;
|
|
}
|
|
|
|
hx = min (max_x, x1);
|
|
|
|
original_veclen = veclen;
|
|
|
|
if (x0 < min_x) {
|
|
|
|
/* fill some beginning section of the array with the
|
|
initial (used to be default) value
|
|
*/
|
|
|
|
double frac = (min_x - x0) / (x1 - x0);
|
|
int32_t subveclen = (int32_t) floor (veclen * frac);
|
|
|
|
subveclen = min (subveclen, veclen);
|
|
|
|
for (i = 0; i < subveclen; ++i) {
|
|
vec[i] = events.front()->value;
|
|
}
|
|
|
|
veclen -= subveclen;
|
|
vec += subveclen;
|
|
}
|
|
|
|
if (veclen && x1 > max_x) {
|
|
|
|
/* fill some end section of the array with the default or final value */
|
|
|
|
double frac = (x1 - max_x) / (x1 - x0);
|
|
|
|
int32_t subveclen = (int32_t) floor (original_veclen * frac);
|
|
|
|
float val;
|
|
|
|
subveclen = min (subveclen, veclen);
|
|
|
|
val = events.back()->value;
|
|
|
|
i = veclen - subveclen;
|
|
|
|
for (i = veclen - subveclen; i < veclen; ++i) {
|
|
vec[i] = val;
|
|
}
|
|
|
|
veclen -= subveclen;
|
|
}
|
|
|
|
if (veclen == 0) {
|
|
return;
|
|
}
|
|
|
|
if (npoints == 1 ) {
|
|
|
|
for (i = 0; i < veclen; ++i) {
|
|
vec[i] = events.front()->value;
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
if (npoints == 2) {
|
|
|
|
/* linear interpolation between 2 points */
|
|
|
|
/* XXX I'm not sure that this is the right thing to
|
|
do here. but its not a common case for the envisaged
|
|
uses.
|
|
*/
|
|
|
|
if (veclen > 1) {
|
|
dx = (hx - lx) / (veclen - 1) ;
|
|
} else {
|
|
dx = 0; // not used
|
|
}
|
|
|
|
double slope = (events.back()->value - events.front()->value)/
|
|
(events.back()->when - events.front()->when);
|
|
double yfrac = dx*slope;
|
|
|
|
vec[0] = events.front()->value + slope * (lx - events.front()->when);
|
|
|
|
for (i = 1; i < veclen; ++i) {
|
|
vec[i] = vec[i-1] + yfrac;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (_dirty) {
|
|
solve ();
|
|
}
|
|
|
|
rx = lx;
|
|
|
|
if (veclen > 1) {
|
|
|
|
dx = (hx - lx) / veclen;
|
|
|
|
for (i = 0; i < veclen; ++i, rx += dx) {
|
|
vec[i] = multipoint_eval (rx);
|
|
}
|
|
}
|
|
}
|
|
|
|
double
|
|
Curve::unlocked_eval (double x)
|
|
{
|
|
if (_dirty) {
|
|
solve ();
|
|
}
|
|
|
|
return shared_eval (x);
|
|
}
|
|
|
|
double
|
|
Curve::multipoint_eval (double x)
|
|
{
|
|
pair<AutomationEventList::iterator,AutomationEventList::iterator> range;
|
|
|
|
if ((lookup_cache.left < 0) ||
|
|
((lookup_cache.left > x) ||
|
|
(lookup_cache.range.first == events.end()) ||
|
|
((*lookup_cache.range.second)->when < x))) {
|
|
|
|
TimeComparator cmp;
|
|
ControlEvent cp (x, 0.0);
|
|
|
|
lookup_cache.range = equal_range (events.begin(), events.end(), &cp, cmp);
|
|
}
|
|
|
|
range = lookup_cache.range;
|
|
|
|
/* EITHER
|
|
|
|
a) x is an existing control point, so first == existing point, second == next point
|
|
|
|
OR
|
|
|
|
b) x is between control points, so range is empty (first == second, points to where
|
|
to insert x)
|
|
|
|
*/
|
|
|
|
if (range.first == range.second) {
|
|
|
|
/* x does not exist within the list as a control point */
|
|
|
|
lookup_cache.left = x;
|
|
|
|
if (range.first == events.begin()) {
|
|
/* we're before the first point */
|
|
// return default_value;
|
|
events.front()->value;
|
|
}
|
|
|
|
if (range.second == events.end()) {
|
|
/* we're after the last point */
|
|
return events.back()->value;
|
|
}
|
|
|
|
double x2 = x * x;
|
|
CurvePoint* cp = dynamic_cast<CurvePoint*> (*range.second);
|
|
|
|
return cp->coeff[0] + (cp->coeff[1] * x) + (cp->coeff[2] * x2) + (cp->coeff[3] * x2 * x);
|
|
}
|
|
|
|
/* x is a control point in the data */
|
|
/* invalidate the cached range because its not usable */
|
|
lookup_cache.left = -1;
|
|
return (*range.first)->value;
|
|
}
|
|
|
|
ControlEvent*
|
|
Curve::point_factory (double when, double val) const
|
|
{
|
|
return new CurvePoint (when, val);
|
|
}
|
|
|
|
ControlEvent*
|
|
Curve::point_factory (const ControlEvent& other) const
|
|
{
|
|
return new CurvePoint (other.when, other.value);
|
|
}
|
|
|
|
#ifdef STATE_MANAGER
|
|
Change
|
|
Curve::restore_state (StateManager::State& state)
|
|
{
|
|
mark_dirty ();
|
|
return AutomationList::restore_state (state);
|
|
}
|
|
#endif
|
|
|
|
extern "C" {
|
|
|
|
void
|
|
curve_get_vector_from_c (void *arg, double x0, double x1, float* vec, int32_t vecsize)
|
|
{
|
|
static_cast<Curve*>(arg)->get_vector (x0, x1, vec, vecsize);
|
|
}
|
|
|
|
}
|