ardour/libs/vamp-sdk/vamp-sdk/hostext/PluginBufferingAdapter.cpp
David Robillard 80c3677c83 Merge with 2.0-ongoing R2988
git-svn-id: svn://localhost/ardour2/branches/3.0@2991 d708f5d6-7413-0410-9779-e7cbd77b26cf
2008-02-02 17:22:04 +00:00

516 lines
15 KiB
C++

/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Vamp
An API for audio analysis and feature extraction plugins.
Centre for Digital Music, Queen Mary, University of London.
Copyright 2006-2007 Chris Cannam and QMUL.
This file by Mark Levy and Chris Cannam.
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the names of the Centre for
Digital Music; Queen Mary, University of London; and Chris Cannam
shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Software without prior written
authorization.
*/
#include <vector>
#include <map>
#include "PluginBufferingAdapter.h"
using std::vector;
using std::map;
namespace Vamp {
namespace HostExt {
class PluginBufferingAdapter::Impl
{
public:
Impl(Plugin *plugin, float inputSampleRate);
~Impl();
bool initialise(size_t channels, size_t stepSize, size_t blockSize);
OutputList getOutputDescriptors() const;
void reset();
FeatureSet process(const float *const *inputBuffers, RealTime timestamp);
FeatureSet getRemainingFeatures();
protected:
class RingBuffer
{
public:
RingBuffer(int n) :
m_buffer(new float[n+1]), m_writer(0), m_reader(0), m_size(n+1) { }
virtual ~RingBuffer() { delete[] m_buffer; }
int getSize() const { return m_size-1; }
void reset() { m_writer = 0; m_reader = 0; }
int getReadSpace() const {
int writer = m_writer, reader = m_reader, space;
if (writer > reader) space = writer - reader;
else if (writer < reader) space = (writer + m_size) - reader;
else space = 0;
return space;
}
int getWriteSpace() const {
int writer = m_writer;
int reader = m_reader;
int space = (reader + m_size - writer - 1);
if (space >= m_size) space -= m_size;
return space;
}
int peek(float *destination, int n) const {
int available = getReadSpace();
if (n > available) {
for (int i = available; i < n; ++i) {
destination[i] = 0.f;
}
n = available;
}
if (n == 0) return n;
int reader = m_reader;
int here = m_size - reader;
const float *const bufbase = m_buffer + reader;
if (here >= n) {
for (int i = 0; i < n; ++i) {
destination[i] = bufbase[i];
}
} else {
for (int i = 0; i < here; ++i) {
destination[i] = bufbase[i];
}
float *const destbase = destination + here;
const int nh = n - here;
for (int i = 0; i < nh; ++i) {
destbase[i] = m_buffer[i];
}
}
return n;
}
int skip(int n) {
int available = getReadSpace();
if (n > available) {
n = available;
}
if (n == 0) return n;
int reader = m_reader;
reader += n;
while (reader >= m_size) reader -= m_size;
m_reader = reader;
return n;
}
int write(const float *source, int n) {
int available = getWriteSpace();
if (n > available) {
n = available;
}
if (n == 0) return n;
int writer = m_writer;
int here = m_size - writer;
float *const bufbase = m_buffer + writer;
if (here >= n) {
for (int i = 0; i < n; ++i) {
bufbase[i] = source[i];
}
} else {
for (int i = 0; i < here; ++i) {
bufbase[i] = source[i];
}
const int nh = n - here;
const float *const srcbase = source + here;
float *const buf = m_buffer;
for (int i = 0; i < nh; ++i) {
buf[i] = srcbase[i];
}
}
writer += n;
while (writer >= m_size) writer -= m_size;
m_writer = writer;
return n;
}
int zero(int n) {
int available = getWriteSpace();
if (n > available) {
n = available;
}
if (n == 0) return n;
int writer = m_writer;
int here = m_size - writer;
float *const bufbase = m_buffer + writer;
if (here >= n) {
for (int i = 0; i < n; ++i) {
bufbase[i] = 0.f;
}
} else {
for (int i = 0; i < here; ++i) {
bufbase[i] = 0.f;
}
const int nh = n - here;
for (int i = 0; i < nh; ++i) {
m_buffer[i] = 0.f;
}
}
writer += n;
while (writer >= m_size) writer -= m_size;
m_writer = writer;
return n;
}
protected:
float *m_buffer;
int m_writer;
int m_reader;
int m_size;
private:
RingBuffer(const RingBuffer &); // not provided
RingBuffer &operator=(const RingBuffer &); // not provided
};
Plugin *m_plugin;
size_t m_inputStepSize;
size_t m_inputBlockSize;
size_t m_stepSize;
size_t m_blockSize;
size_t m_channels;
vector<RingBuffer *> m_queue;
float **m_buffers;
float m_inputSampleRate;
RealTime m_timestamp;
bool m_unrun;
OutputList m_outputs;
void processBlock(FeatureSet& allFeatureSets, RealTime timestamp);
};
PluginBufferingAdapter::PluginBufferingAdapter(Plugin *plugin) :
PluginWrapper(plugin)
{
m_impl = new Impl(plugin, m_inputSampleRate);
}
PluginBufferingAdapter::~PluginBufferingAdapter()
{
delete m_impl;
}
bool
PluginBufferingAdapter::initialise(size_t channels, size_t stepSize, size_t blockSize)
{
return m_impl->initialise(channels, stepSize, blockSize);
}
PluginBufferingAdapter::OutputList
PluginBufferingAdapter::getOutputDescriptors() const
{
return m_impl->getOutputDescriptors();
}
void
PluginBufferingAdapter::reset()
{
m_impl->reset();
}
PluginBufferingAdapter::FeatureSet
PluginBufferingAdapter::process(const float *const *inputBuffers,
RealTime timestamp)
{
return m_impl->process(inputBuffers, timestamp);
}
PluginBufferingAdapter::FeatureSet
PluginBufferingAdapter::getRemainingFeatures()
{
return m_impl->getRemainingFeatures();
}
PluginBufferingAdapter::Impl::Impl(Plugin *plugin, float inputSampleRate) :
m_plugin(plugin),
m_inputStepSize(0),
m_inputBlockSize(0),
m_stepSize(0),
m_blockSize(0),
m_channels(0),
m_queue(0),
m_buffers(0),
m_inputSampleRate(inputSampleRate),
m_timestamp(RealTime::zeroTime),
m_unrun(true)
{
m_outputs = plugin->getOutputDescriptors();
}
PluginBufferingAdapter::Impl::~Impl()
{
// the adapter will delete the plugin
for (size_t i = 0; i < m_channels; ++i) {
delete m_queue[i];
delete[] m_buffers[i];
}
delete[] m_buffers;
}
size_t
PluginBufferingAdapter::getPreferredStepSize() const
{
return getPreferredBlockSize();
}
bool
PluginBufferingAdapter::Impl::initialise(size_t channels, size_t stepSize, size_t blockSize)
{
if (stepSize != blockSize) {
std::cerr << "PluginBufferingAdapter::initialise: input stepSize must be equal to blockSize for this adapter (stepSize = " << stepSize << ", blockSize = " << blockSize << ")" << std::endl;
return false;
}
m_channels = channels;
m_inputStepSize = stepSize;
m_inputBlockSize = blockSize;
// use the step and block sizes which the plugin prefers
m_stepSize = m_plugin->getPreferredStepSize();
m_blockSize = m_plugin->getPreferredBlockSize();
// or sensible defaults if it has no preference
if (m_blockSize == 0) {
m_blockSize = 1024;
}
if (m_stepSize == 0) {
if (m_plugin->getInputDomain() == Vamp::Plugin::FrequencyDomain) {
m_stepSize = m_blockSize/2;
} else {
m_stepSize = m_blockSize;
}
} else if (m_stepSize > m_blockSize) {
if (m_plugin->getInputDomain() == Vamp::Plugin::FrequencyDomain) {
m_blockSize = m_stepSize * 2;
} else {
m_blockSize = m_stepSize;
}
}
// std::cerr << "PluginBufferingAdapter::initialise: stepSize " << m_inputStepSize << " -> " << m_stepSize
// << ", blockSize " << m_inputBlockSize << " -> " << m_blockSize << std::endl;
// current implementation breaks if step is greater than block
if (m_stepSize > m_blockSize) {
std::cerr << "PluginBufferingAdapter::initialise: plugin's preferred stepSize greater than blockSize, giving up!" << std::endl;
return false;
}
m_buffers = new float *[m_channels];
for (size_t i = 0; i < m_channels; ++i) {
m_queue.push_back(new RingBuffer(m_blockSize + m_inputBlockSize));
m_buffers[i] = new float[m_blockSize];
}
return m_plugin->initialise(m_channels, m_stepSize, m_blockSize);
}
PluginBufferingAdapter::OutputList
PluginBufferingAdapter::Impl::getOutputDescriptors() const
{
OutputList outs = m_plugin->getOutputDescriptors();
for (size_t i = 0; i < outs.size(); ++i) {
if (outs[i].sampleType == OutputDescriptor::OneSamplePerStep) {
outs[i].sampleRate = 1.f / m_stepSize;
}
outs[i].sampleType = OutputDescriptor::VariableSampleRate;
}
return outs;
}
void
PluginBufferingAdapter::Impl::reset()
{
m_timestamp = RealTime::zeroTime;
m_unrun = true;
for (size_t i = 0; i < m_queue.size(); ++i) {
m_queue[i]->reset();
}
}
PluginBufferingAdapter::FeatureSet
PluginBufferingAdapter::Impl::process(const float *const *inputBuffers,
RealTime timestamp)
{
FeatureSet allFeatureSets;
if (m_unrun) {
m_timestamp = timestamp;
m_unrun = false;
}
// queue the new input
for (size_t i = 0; i < m_channels; ++i) {
int written = m_queue[i]->write(inputBuffers[i], m_inputBlockSize);
if (written < int(m_inputBlockSize) && i == 0) {
std::cerr << "WARNING: PluginBufferingAdapter::Impl::process: "
<< "Buffer overflow: wrote " << written
<< " of " << m_inputBlockSize
<< " input samples (for plugin step size "
<< m_stepSize << ", block size " << m_blockSize << ")"
<< std::endl;
}
}
// process as much as we can
while (m_queue[0]->getReadSpace() >= int(m_blockSize)) {
processBlock(allFeatureSets, timestamp);
}
return allFeatureSets;
}
PluginBufferingAdapter::FeatureSet
PluginBufferingAdapter::Impl::getRemainingFeatures()
{
FeatureSet allFeatureSets;
// process remaining samples in queue
while (m_queue[0]->getReadSpace() >= int(m_blockSize)) {
processBlock(allFeatureSets, m_timestamp);
}
// pad any last samples remaining and process
if (m_queue[0]->getReadSpace() > 0) {
for (size_t i = 0; i < m_channels; ++i) {
m_queue[i]->zero(m_blockSize - m_queue[i]->getReadSpace());
}
processBlock(allFeatureSets, m_timestamp);
}
// get remaining features
FeatureSet featureSet = m_plugin->getRemainingFeatures();
for (map<int, FeatureList>::iterator iter = featureSet.begin();
iter != featureSet.end(); ++iter) {
FeatureList featureList = iter->second;
for (size_t i = 0; i < featureList.size(); ++i) {
allFeatureSets[iter->first].push_back(featureList[i]);
}
}
return allFeatureSets;
}
void
PluginBufferingAdapter::Impl::processBlock(FeatureSet& allFeatureSets,
RealTime timestamp)
{
for (size_t i = 0; i < m_channels; ++i) {
m_queue[i]->peek(m_buffers[i], m_blockSize);
}
FeatureSet featureSet = m_plugin->process(m_buffers, m_timestamp);
for (map<int, FeatureList>::iterator iter = featureSet.begin();
iter != featureSet.end(); ++iter) {
FeatureList featureList = iter->second;
int outputNo = iter->first;
for (size_t i = 0; i < featureList.size(); ++i) {
// make sure the timestamp is set
switch (m_outputs[outputNo].sampleType) {
case OutputDescriptor::OneSamplePerStep:
// use our internal timestamp - OK????
featureList[i].timestamp = m_timestamp;
break;
case OutputDescriptor::FixedSampleRate:
// use our internal timestamp
featureList[i].timestamp = m_timestamp;
break;
case OutputDescriptor::VariableSampleRate:
break; // plugin must set timestamp
default:
break;
}
allFeatureSets[outputNo].push_back(featureList[i]);
}
}
// step forward
for (size_t i = 0; i < m_channels; ++i) {
m_queue[i]->skip(m_stepSize);
}
// fake up the timestamp each time we step forward
long frame = RealTime::realTime2Frame(m_timestamp,
int(m_inputSampleRate + 0.5));
m_timestamp = RealTime::frame2RealTime(frame + m_stepSize,
int(m_inputSampleRate + 0.5));
}
}
}