ardour/libs/rubberband/src/StretcherChannelData.cpp
Paul Davis ea99cb0d6b copy from vendor branch, v1.0
git-svn-id: svn://localhost/ardour2/branches/2.0-ongoing@2775 d708f5d6-7413-0410-9779-e7cbd77b26cf
2007-12-11 15:26:55 +00:00

271 lines
7.2 KiB
C++

/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
#include "StretcherChannelData.h"
#include "Resampler.h"
namespace RubberBand
{
RubberBandStretcher::Impl::ChannelData::ChannelData(size_t windowSize,
size_t outbufSize)
{
std::set<size_t> s;
construct(s, windowSize, outbufSize);
}
RubberBandStretcher::Impl::ChannelData::ChannelData(const std::set<size_t> &windowSizes,
size_t initialWindowSize,
size_t outbufSize)
{
construct(windowSizes, initialWindowSize, outbufSize);
}
void
RubberBandStretcher::Impl::ChannelData::construct(const std::set<size_t> &windowSizes,
size_t initialWindowSize,
size_t outbufSize)
{
size_t maxSize = initialWindowSize;
if (!windowSizes.empty()) {
// std::set is ordered by value
std::set<size_t>::const_iterator i = windowSizes.end();
maxSize = *--i;
}
if (windowSizes.find(initialWindowSize) == windowSizes.end()) {
if (initialWindowSize > maxSize) maxSize = initialWindowSize;
}
size_t realSize = maxSize/2 + 1; // size of the real "half" of freq data
// std::cerr << "ChannelData::construct([" << windowSizes.size() << "], " << maxSize << ", " << outbufSize << ")" << std::endl;
if (outbufSize < maxSize) outbufSize = maxSize;
inbuf = new RingBuffer<float>(maxSize);
outbuf = new RingBuffer<float>(outbufSize);
mag = new double[realSize];
phase = new double[realSize];
prevPhase = new double[realSize];
unwrappedPhase = new double[realSize];
freqPeak = new size_t[realSize];
accumulator = new float[maxSize];
windowAccumulator = new float[maxSize];
fltbuf = new float[maxSize];
for (std::set<size_t>::const_iterator i = windowSizes.begin();
i != windowSizes.end(); ++i) {
ffts[*i] = new FFT(*i);
ffts[*i]->initDouble();
}
if (windowSizes.find(initialWindowSize) == windowSizes.end()) {
ffts[initialWindowSize] = new FFT(initialWindowSize);
ffts[initialWindowSize]->initDouble();
}
fft = ffts[initialWindowSize];
dblbuf = fft->getDoubleTimeBuffer();
resampler = 0;
resamplebuf = 0;
resamplebufSize = 0;
reset();
for (size_t i = 0; i < realSize; ++i) {
mag[i] = 0.0;
phase[i] = 0.0;
prevPhase[i] = 0.0;
unwrappedPhase[i] = 0.0;
freqPeak[i] = 0;
}
for (size_t i = 0; i < initialWindowSize; ++i) {
dblbuf[i] = 0.0;
}
for (size_t i = 0; i < maxSize; ++i) {
accumulator[i] = 0.f;
windowAccumulator[i] = 0.f;
fltbuf[i] = 0.0;
}
}
void
RubberBandStretcher::Impl::ChannelData::setWindowSize(size_t windowSize)
{
size_t oldSize = inbuf->getSize();
size_t realSize = windowSize/2 + 1;
// std::cerr << "ChannelData::setWindowSize(" << windowSize << ") [from " << oldSize << "]" << std::endl;
if (oldSize >= windowSize) {
// no need to reallocate buffers, just reselect fft
//!!! we can't actually do this without locking against the
//process thread, can we? we need to zero the mag/phase
//buffers without interference
if (ffts.find(windowSize) == ffts.end()) {
//!!! this also requires a lock, but it shouldn't occur in
//RT mode with proper initialisation
ffts[windowSize] = new FFT(windowSize);
ffts[windowSize]->initDouble();
}
fft = ffts[windowSize];
dblbuf = fft->getDoubleTimeBuffer();
for (size_t i = 0; i < windowSize; ++i) {
dblbuf[i] = 0.0;
}
for (size_t i = 0; i < realSize; ++i) {
mag[i] = 0.0;
phase[i] = 0.0;
prevPhase[i] = 0.0;
unwrappedPhase[i] = 0.0;
freqPeak[i] = 0;
}
return;
}
//!!! at this point we need a lock in case a different client
//thread is calling process() -- we need this lock even if we
//aren't running in threaded mode ourselves -- if we're in RT
//mode, then the process call should trylock and fail if the lock
//is unavailable (since this should never normally be the case in
//general use in RT mode)
RingBuffer<float> *newbuf = inbuf->resized(windowSize);
delete inbuf;
inbuf = newbuf;
// We don't want to preserve data in these arrays
delete[] mag;
delete[] phase;
delete[] prevPhase;
delete[] unwrappedPhase;
delete[] freqPeak;
mag = new double[realSize];
phase = new double[realSize];
prevPhase = new double[realSize];
unwrappedPhase = new double[realSize];
freqPeak = new size_t[realSize];
delete[] fltbuf;
fltbuf = new float[windowSize];
// But we do want to preserve data in these
float *newAcc = new float[windowSize];
for (size_t i = 0; i < oldSize; ++i) newAcc[i] = accumulator[i];
delete[] accumulator;
accumulator = newAcc;
newAcc = new float[windowSize];
for (size_t i = 0; i < oldSize; ++i) newAcc[i] = windowAccumulator[i];
delete[] windowAccumulator;
windowAccumulator = newAcc;
//!!! and resampler?
for (size_t i = 0; i < realSize; ++i) {
mag[i] = 0.0;
phase[i] = 0.0;
prevPhase[i] = 0.0;
unwrappedPhase[i] = 0.0;
freqPeak[i] = 0;
}
for (size_t i = 0; i < windowSize; ++i) {
fltbuf[i] = 0.0;
}
for (size_t i = oldSize; i < windowSize; ++i) {
accumulator[i] = 0.f;
windowAccumulator[i] = 0.f;
}
if (ffts.find(windowSize) == ffts.end()) {
ffts[windowSize] = new FFT(windowSize);
ffts[windowSize]->initDouble();
}
fft = ffts[windowSize];
dblbuf = fft->getDoubleTimeBuffer();
for (size_t i = 0; i < windowSize; ++i) {
dblbuf[i] = 0.0;
}
}
void
RubberBandStretcher::Impl::ChannelData::setOutbufSize(size_t outbufSize)
{
size_t oldSize = outbuf->getSize();
// std::cerr << "ChannelData::setOutbufSize(" << outbufSize << ") [from " << oldSize << "]" << std::endl;
if (oldSize < outbufSize) {
//!!! at this point we need a lock in case a different client
//thread is calling process()
RingBuffer<float> *newbuf = outbuf->resized(outbufSize);
delete outbuf;
outbuf = newbuf;
}
}
RubberBandStretcher::Impl::ChannelData::~ChannelData()
{
delete resampler;
delete[] resamplebuf;
delete inbuf;
delete outbuf;
delete[] mag;
delete[] phase;
delete[] prevPhase;
delete[] unwrappedPhase;
delete[] freqPeak;
delete[] accumulator;
delete[] windowAccumulator;
delete[] fltbuf;
for (std::map<size_t, FFT *>::iterator i = ffts.begin();
i != ffts.end(); ++i) {
delete i->second;
}
}
void
RubberBandStretcher::Impl::ChannelData::reset()
{
inbuf->reset();
outbuf->reset();
if (resampler) resampler->reset();
accumulatorFill = 0;
prevIncrement = 0;
chunkCount = 0;
inCount = 0;
inputSize = -1;
outCount = 0;
draining = false;
outputComplete = false;
}
}