/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Rubber Band An audio time-stretching and pitch-shifting library. Copyright 2007 Chris Cannam. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "StretcherImpl.h" #include "PercussiveAudioCurve.h" #include "HighFrequencyAudioCurve.h" #include "ConstantAudioCurve.h" #include "StretchCalculator.h" #include "StretcherChannelData.h" #include "Resampler.h" #include #include #include #include using std::cerr; using std::endl; namespace RubberBand { RubberBandStretcher::Impl::ProcessThread::ProcessThread(Impl *s, size_t c) : m_s(s), m_channel(c), m_dataAvailable(std::string("data ") + char('A' + c)), m_abandoning(false) { } void RubberBandStretcher::Impl::ProcessThread::run() { if (m_s->m_debugLevel > 1) { cerr << "thread " << m_channel << " getting going" << endl; } ChannelData &cd = *m_s->m_channelData[m_channel]; while (cd.inputSize == -1 || cd.inbuf->getReadSpace() > 0) { // if (cd.inputSize != -1) { // cerr << "inputSize == " << cd.inputSize // << ", readSpace == " << cd.inbuf->getReadSpace() << endl; // } bool any = false, last = false; m_s->processChunks(m_channel, any, last); if (last) break; if (any) m_s->m_spaceAvailable.signal(); m_dataAvailable.lock(); if (!m_s->testInbufReadSpace(m_channel) && !m_abandoning) { m_dataAvailable.wait(); } else { m_dataAvailable.unlock(); } if (m_abandoning) { if (m_s->m_debugLevel > 1) { cerr << "thread " << m_channel << " abandoning" << endl; } return; } } bool any = false, last = false; m_s->processChunks(m_channel, any, last); m_s->m_spaceAvailable.signal(); if (m_s->m_debugLevel > 1) { cerr << "thread " << m_channel << " done" << endl; } } void RubberBandStretcher::Impl::ProcessThread::signalDataAvailable() { m_dataAvailable.signal(); } void RubberBandStretcher::Impl::ProcessThread::abandon() { m_abandoning = true; } void RubberBandStretcher::Impl::processChunks(size_t c, bool &any, bool &last) { // Process as many chunks as there are available on the input // buffer for channel c. This requires that the increments have // already been calculated. ChannelData &cd = *m_channelData[c]; last = false; any = false; while (!last) { if (!testInbufReadSpace(c)) { // cerr << "not enough input" << endl; break; } any = true; if (!cd.draining) { size_t got = cd.inbuf->peek(cd.fltbuf, m_windowSize); assert(got == m_windowSize || cd.inputSize >= 0); cd.inbuf->skip(m_increment); analyseChunk(c); } bool phaseReset = false; size_t phaseIncrement, shiftIncrement; getIncrements(c, phaseIncrement, shiftIncrement, phaseReset); last = processChunkForChannel(c, phaseIncrement, shiftIncrement, phaseReset); cd.chunkCount++; if (m_debugLevel > 2) { cerr << "channel " << c << ": last = " << last << ", chunkCount = " << cd.chunkCount << endl; } } } bool RubberBandStretcher::Impl::processOneChunk() { // Process a single chunk for all channels, provided there is // enough data on each channel for at least one chunk. This is // able to calculate increments as it goes along. for (size_t c = 0; c < m_channels; ++c) { if (!testInbufReadSpace(c)) return false; ChannelData &cd = *m_channelData[c]; if (!cd.draining) { size_t got = cd.inbuf->peek(cd.fltbuf, m_windowSize); assert(got == m_windowSize || cd.inputSize >= 0); cd.inbuf->skip(m_increment); analyseChunk(c); } } bool phaseReset = false; size_t phaseIncrement, shiftIncrement; if (!getIncrements(0, phaseIncrement, shiftIncrement, phaseReset)) { calculateIncrements(phaseIncrement, shiftIncrement, phaseReset); } bool last = false; for (size_t c = 0; c < m_channels; ++c) { last = processChunkForChannel(c, phaseIncrement, shiftIncrement, phaseReset); m_channelData[c]->chunkCount++; } return last; } bool RubberBandStretcher::Impl::testInbufReadSpace(size_t c) { ChannelData &cd = *m_channelData[c]; RingBuffer &inbuf = *cd.inbuf; size_t rs = inbuf.getReadSpace(); if (rs < m_windowSize && !cd.draining) { if (cd.inputSize == -1) { // Not all the input data has been written to the inbuf // (that's why the input size is not yet set). We can't // process, because we don't have a full chunk of data, so // our process chunk would contain some empty padding in // its input -- and that would give incorrect output, as // we know there is more input to come. if (!m_threaded) { // cerr << "WARNING: RubberBandStretcher: read space < chunk size (" // << inbuf.getReadSpace() << " < " << m_windowSize // << ") when not all input written, on processChunks for channel " << c << endl; } return false; } if (rs == 0) { if (m_debugLevel > 1) { cerr << "read space = 0, giving up" << endl; } return false; } else if (rs < m_windowSize/2) { if (m_debugLevel > 1) { cerr << "read space = " << rs << ", setting draining true" << endl; } cd.draining = true; } } return true; } bool RubberBandStretcher::Impl::processChunkForChannel(size_t c, size_t phaseIncrement, size_t shiftIncrement, bool phaseReset) { // Process a single chunk on a single channel. This assumes // enough input data is available; caller must have tested this // using e.g. testInbufReadSpace first. Return true if this is // the last chunk on the channel. if (phaseReset && (m_debugLevel > 1)) { cerr << "processChunkForChannel: phase reset found, incrs " << phaseIncrement << ":" << shiftIncrement << endl; } ChannelData &cd = *m_channelData[c]; if (!cd.draining) { // This is the normal processing case -- draining is only // set when all the input has been used and we only need // to write from the existing accumulator into the output. // We know we have enough samples available in m_inbuf -- // this is usually m_windowSize, but we know that if fewer // are available, it's OK to use zeroes for the rest // (which the ring buffer will provide) because we've // reached the true end of the data. // We need to peek m_windowSize samples for processing, and // then skip m_increment to advance the read pointer. modifyChunk(c, phaseIncrement, phaseReset); synthesiseChunk(c); // reads from cd.mag, cd.phase if (m_debugLevel > 2) { if (phaseReset) { for (int i = 0; i < 10; ++i) { cd.accumulator[i] = 1.2f - (i % 3) * 1.2f; } } } } bool last = false; if (cd.draining) { if (m_debugLevel > 1) { cerr << "draining: accumulator fill = " << cd.accumulatorFill << " (shiftIncrement = " << shiftIncrement << ")" << endl; } if (shiftIncrement == 0) { cerr << "WARNING: draining: shiftIncrement == 0, can't handle that in this context: setting to " << m_increment << endl; shiftIncrement = m_increment; } if (cd.accumulatorFill <= shiftIncrement) { if (m_debugLevel > 1) { cerr << "reducing shift increment from " << shiftIncrement << " to " << cd.accumulatorFill << " and marking as last" << endl; } shiftIncrement = cd.accumulatorFill; last = true; } } if (m_threaded) { size_t required = shiftIncrement; if (m_pitchScale != 1.0) { required = int(required / m_pitchScale) + 1; } if (cd.outbuf->getWriteSpace() < required) { if (m_debugLevel > 0) { cerr << "Buffer overrun on output for channel " << c << endl; } //!!! The only correct thing we can do here is resize the // buffer. We can't wait for the client thread to read // some data out from the buffer so as to make more space, // because the client thread is probably stuck in a // process() call waiting for us to stow away enough input // increments to allow the process() call to complete. } } writeChunk(c, shiftIncrement, last); return last; } void RubberBandStretcher::Impl::calculateIncrements(size_t &phaseIncrementRtn, size_t &shiftIncrementRtn, bool &phaseReset) { // cerr << "calculateIncrements" << endl; // Calculate the next upcoming phase and shift increment, on the // basis that both channels are in sync. This is in contrast to // getIncrements, which requires that all the increments have been // calculated in advance but can then return increments // corresponding to different chunks in different channels. // Requires frequency domain representations of channel data in // the mag and phase buffers in the channel. // This function is only used in real-time mode. phaseIncrementRtn = m_increment; shiftIncrementRtn = m_increment; phaseReset = false; if (m_channels == 0) return; ChannelData &cd = *m_channelData[0]; size_t bc = cd.chunkCount; for (size_t c = 1; c < m_channels; ++c) { if (m_channelData[c]->chunkCount != bc) { cerr << "ERROR: RubberBandStretcher::Impl::calculateIncrements: Channels are not in sync" << endl; return; } } // Normally we would mix down the time-domain signal and apply a // single FFT, or else mix down the Cartesian form of the // frequency-domain signal. Both of those would be inefficient // from this position. Fortunately, the onset detectors should // work reasonably well (maybe even better?) if we just sum the // magnitudes of the frequency-domain channel signals and forget // about phase entirely. Normally we don't expect the channel // phases to cancel each other, and broadband effects will still // be apparent. for (size_t i = 0; i <= m_windowSize/2; ++i) { cd.fltbuf[i] = 0.0; } for (size_t c = 0; c < m_channels; ++c) { for (size_t i = 0; i <= m_windowSize/2; ++i) { cd.fltbuf[i] += m_channelData[c]->mag[i]; } } float df = m_phaseResetAudioCurve->process(cd.fltbuf, m_increment); int incr = m_stretchCalculator->calculateSingle (getEffectiveRatio(), m_inputDuration, //!!! no, totally wrong... fortunately it doesn't matter atm df); m_lastProcessPhaseResetDf.write(&df, 1); m_lastProcessOutputIncrements.write(&incr, 1); if (incr < 0) { phaseReset = true; incr = -incr; } // The returned increment is the phase increment. The shift // increment for one chunk is the same as the phase increment for // the following chunk (see comment below). This means we don't // actually know the shift increment until we see the following // phase increment... which is a bit of a problem. // This implies we should use this increment for the shift // increment, and make the following phase increment the same as // it. This means in RT mode we'll be one chunk later with our // phase reset than we would be in non-RT mode. The sensitivity // of the broadband onset detector may mean that this isn't a // problem -- test it and see. shiftIncrementRtn = incr; if (cd.prevIncrement == 0) { phaseIncrementRtn = shiftIncrementRtn; } else { phaseIncrementRtn = cd.prevIncrement; } cd.prevIncrement = shiftIncrementRtn; } bool RubberBandStretcher::Impl::getIncrements(size_t channel, size_t &phaseIncrementRtn, size_t &shiftIncrementRtn, bool &phaseReset) { if (channel >= m_channels) { phaseIncrementRtn = m_increment; shiftIncrementRtn = m_increment; phaseReset = false; return false; } // There are two relevant output increments here. The first is // the phase increment which we use when recalculating the phases // for the current chunk; the second is the shift increment used // to determine how far to shift the processing buffer after // writing the chunk. The shift increment for one chunk is the // same as the phase increment for the following chunk. // When an onset occurs for which we need to reset phases, the // increment given will be negative. // When we reset phases, the previous shift increment (and so // current phase increments) must have been m_increment to ensure // consistency. // m_outputIncrements stores phase increments. ChannelData &cd = *m_channelData[channel]; bool gotData = true; if (cd.chunkCount >= m_outputIncrements.size()) { // cerr << "WARNING: RubberBandStretcher::Impl::getIncrements:" // << " chunk count " << cd.chunkCount << " >= " // << m_outputIncrements.size() << endl; if (m_outputIncrements.size() == 0) { phaseIncrementRtn = m_increment; shiftIncrementRtn = m_increment; phaseReset = false; return false; } else { cd.chunkCount = m_outputIncrements.size()-1; gotData = false; } } int phaseIncrement = m_outputIncrements[cd.chunkCount]; int shiftIncrement = phaseIncrement; if (cd.chunkCount + 1 < m_outputIncrements.size()) { shiftIncrement = m_outputIncrements[cd.chunkCount + 1]; } if (phaseIncrement < 0) { phaseIncrement = -phaseIncrement; phaseReset = true; } if (shiftIncrement < 0) { shiftIncrement = -shiftIncrement; } if (shiftIncrement >= int(m_windowSize)) { cerr << "*** ERROR: RubberBandStretcher::Impl::processChunks: shiftIncrement " << shiftIncrement << " >= windowSize " << m_windowSize << " at " << cd.chunkCount << " (of " << m_outputIncrements.size() << ")" << endl; shiftIncrement = m_windowSize; } phaseIncrementRtn = phaseIncrement; shiftIncrementRtn = shiftIncrement; if (cd.chunkCount == 0) phaseReset = true; // don't mess with the first chunk return gotData; } void RubberBandStretcher::Impl::analyseChunk(size_t channel) { size_t i; ChannelData &cd = *m_channelData[channel]; // cd.fltbuf is known to contain m_windowSize samples m_window->cut(cd.fltbuf); for (i = 0; i < m_windowSize/2; ++i) { cd.dblbuf[i] = cd.fltbuf[i + m_windowSize/2]; cd.dblbuf[i + m_windowSize/2] = cd.fltbuf[i]; } cd.fft->forwardPolar(cd.dblbuf, cd.mag, cd.phase); } double mod(double x, double y) { return x - (y * floor(x / y)); } double princarg(double a) { return mod(a + M_PI, -2 * M_PI) + M_PI; } void RubberBandStretcher::Impl::modifyChunk(size_t channel, size_t outputIncrement, bool phaseReset) { ChannelData &cd = *m_channelData[channel]; if (phaseReset && m_debugLevel > 1) { cerr << "phase reset: leaving phases unmodified" << endl; } size_t count = m_windowSize/2; size_t pfp = 0; double rate = m_stretcher->m_sampleRate; if (!(m_options & OptionPhaseIndependent)) { cd.freqPeak[0] = 0; float freq0 = m_freq0; float freq1 = m_freq1; float freq2 = m_freq2; // As the stretch ratio increases, so the frequency thresholds // for phase lamination should increase. Beyond a ratio of // about 1.5, the threshold should be about 1200Hz; beyond a // ratio of 2, we probably want no lamination to happen at all // by default. This calculation aims for more or less that. // We only do this if the phase option is OptionPhaseAdaptive // (the default), i.e. not Independent or PeakLocked. if (!(m_options & OptionPhasePeakLocked)) { float r = getEffectiveRatio(); if (r > 1) { float rf0 = 600 + (600 * ((r-1)*(r-1)*(r-1)*2)); float f1ratio = freq1 / freq0; float f2ratio = freq2 / freq0; freq0 = std::max(freq0, rf0); freq1 = freq0 * f1ratio; freq2 = freq0 * f2ratio; } } size_t limit0 = lrint((freq0 * m_windowSize) / rate); size_t limit1 = lrint((freq1 * m_windowSize) / rate); size_t limit2 = lrint((freq2 * m_windowSize) / rate); size_t range = 0; if (limit1 < limit0) limit1 = limit0; if (limit2 < limit1) limit2 = limit1; // cerr << "limit0 = " << limit0 << " limit1 = " << limit1 << " limit2 = " << limit2 << endl; int peakCount = 0; for (size_t i = 0; i <= count; ++i) { double mag = cd.mag[i]; bool isPeak = true; for (size_t j = 1; j <= range; ++j) { if (mag < cd.mag[i-j]) { isPeak = false; break; } if (mag < cd.mag[i+j]) { isPeak = false; break; } } if (isPeak) { // i is a peak bin. // The previous peak bin was at pfp; make freqPeak entries // from pfp to half-way between pfp and i point at pfp, and // those from the half-way mark to i point at i. size_t halfway = (pfp + i) / 2; if (halfway == pfp) halfway = pfp + 1; for (size_t j = pfp + 1; j < halfway; ++j) { cd.freqPeak[j] = pfp; } for (size_t j = halfway; j <= i; ++j) { cd.freqPeak[j] = i; } pfp = i; ++peakCount; } if (i == limit0) range = 1; if (i == limit1) range = 2; if (i >= limit2) { range = 3; if (i + range + 1 > count) range = count - i; } } // cerr << "peakCount = " << peakCount << endl; cd.freqPeak[count-1] = count-1; cd.freqPeak[count] = count; } double peakInPhase = 0.0; double peakOutPhase = 0.0; size_t p, pp; for (size_t i = 0; i <= count; ++i) { if (m_options & OptionPhaseIndependent) { p = i; pp = i-1; } else { p = cd.freqPeak[i]; pp = cd.freqPeak[i-1]; } bool resetThis = phaseReset; if (m_options & OptionTransientsMixed) { size_t low = lrint((150 * m_windowSize) / rate); size_t high = lrint((1000 * m_windowSize) / rate); if (resetThis) { if (i > low && i < high) resetThis = false; } } if (!resetThis) { if (i == 0 || p != pp) { double omega = (2 * M_PI * m_increment * p) / m_windowSize; double expectedPhase = cd.prevPhase[p] + omega; double phaseError = princarg(cd.phase[p] - expectedPhase); double phaseIncrement = (omega + phaseError) / m_increment; double unwrappedPhase = cd.unwrappedPhase[p] + outputIncrement * phaseIncrement; cd.prevPhase[p] = cd.phase[p]; cd.phase[p] = unwrappedPhase; cd.unwrappedPhase[p] = unwrappedPhase; peakInPhase = cd.prevPhase[p]; peakOutPhase = unwrappedPhase; } if (i != p) { double diffToPeak = peakInPhase - cd.phase[i]; double unwrappedPhase = peakOutPhase - diffToPeak; cd.prevPhase[i] = cd.phase[i]; cd.phase[i] = unwrappedPhase; cd.unwrappedPhase[i] = unwrappedPhase; } } else { cd.prevPhase[i] = cd.phase[i]; cd.unwrappedPhase[i] = cd.phase[i]; } } } void RubberBandStretcher::Impl::synthesiseChunk(size_t channel) { ChannelData &cd = *m_channelData[channel]; cd.fft->inversePolar(cd.mag, cd.phase, cd.dblbuf); for (size_t i = 0; i < m_windowSize/2; ++i) { cd.fltbuf[i] = cd.dblbuf[i + m_windowSize/2]; cd.fltbuf[i + m_windowSize/2] = cd.dblbuf[i]; } // our ffts produced unscaled results for (size_t i = 0; i < m_windowSize; ++i) { cd.fltbuf[i] = cd.fltbuf[i] / m_windowSize; } m_window->cut(cd.fltbuf); for (size_t i = 0; i < m_windowSize; ++i) { cd.accumulator[i] += cd.fltbuf[i]; } cd.accumulatorFill = m_windowSize; float fixed = m_window->getArea() * 1.5; for (size_t i = 0; i < m_windowSize; ++i) { float val = m_window->getValue(i); cd.windowAccumulator[i] += val * fixed; } } void RubberBandStretcher::Impl::writeChunk(size_t channel, size_t shiftIncrement, bool last) { ChannelData &cd = *m_channelData[channel]; if (m_debugLevel > 2) { cerr << "writeChunk(" << channel << ", " << shiftIncrement << ", " << last << ")" << endl; } for (int i = 0; i < shiftIncrement; ++i) { if (cd.windowAccumulator[i] > 0.f) { cd.accumulator[i] /= cd.windowAccumulator[i]; } } // for exact sample scaling (probably not meaningful if we // were running in RT mode) size_t theoreticalOut = 0; if (cd.inputSize >= 0) { theoreticalOut = lrint(cd.inputSize * m_timeRatio); } if (m_pitchScale != 1.0 && cd.resampler) { size_t reqSize = int(ceil(shiftIncrement / m_pitchScale)); if (reqSize > cd.resamplebufSize) { // This shouldn't normally happen -- the buffer is // supposed to be initialised with enough space in the // first place. But we retain this check in case the // pitch scale has changed since then, or the stretch // calculator has gone mad, or something. cerr << "WARNING: RubberBandStretcher::Impl::writeChunk: resizing resampler buffer from " << cd.resamplebufSize << " to " << reqSize << endl; cd.resamplebufSize = reqSize; if (cd.resamplebuf) delete[] cd.resamplebuf; cd.resamplebuf = new float[cd.resamplebufSize]; } size_t outframes = cd.resampler->resample(&cd.accumulator, &cd.resamplebuf, shiftIncrement, 1.0 / m_pitchScale, last); writeOutput(*cd.outbuf, cd.resamplebuf, outframes, cd.outCount, theoreticalOut); } else { writeOutput(*cd.outbuf, cd.accumulator, shiftIncrement, cd.outCount, theoreticalOut); } for (size_t i = 0; i < m_windowSize - shiftIncrement; ++i) { cd.accumulator[i] = cd.accumulator[i + shiftIncrement]; } for (size_t i = m_windowSize - shiftIncrement; i < m_windowSize; ++i) { cd.accumulator[i] = 0.0f; } for (size_t i = 0; i < m_windowSize - shiftIncrement; ++i) { cd.windowAccumulator[i] = cd.windowAccumulator[i + shiftIncrement]; } for (size_t i = m_windowSize - shiftIncrement; i < m_windowSize; ++i) { cd.windowAccumulator[i] = 0.0f; } if (cd.accumulatorFill > shiftIncrement) { cd.accumulatorFill -= shiftIncrement; } else { cd.accumulatorFill = 0; if (cd.draining) { if (m_debugLevel > 1) { cerr << "RubberBandStretcher::Impl::processChunks: setting outputComplete to true" << endl; } cd.outputComplete = true; } } } void RubberBandStretcher::Impl::writeOutput(RingBuffer &to, float *from, size_t qty, size_t &outCount, size_t theoreticalOut) { // In non-RT mode, we don't want to write the first startSkip // samples, because the first chunk is centred on the start of the // output. In RT mode we didn't apply any pre-padding in // configure(), so we don't want to remove any here. size_t startSkip = 0; if (!m_realtime) { startSkip = lrintf((m_windowSize/2) / m_pitchScale); } if (outCount > startSkip) { // this is the normal case if (theoreticalOut > 0) { if (m_debugLevel > 1) { cerr << "theoreticalOut = " << theoreticalOut << ", outCount = " << outCount << ", startSkip = " << startSkip << ", qty = " << qty << endl; } if (outCount - startSkip <= theoreticalOut && outCount - startSkip + qty > theoreticalOut) { qty = theoreticalOut - (outCount - startSkip); if (m_debugLevel > 1) { cerr << "reduce qty to " << qty << endl; } } } if (m_debugLevel > 2) { cerr << "writing " << qty << endl; } size_t written = to.write(from, qty); if (written < qty) { cerr << "WARNING: RubberBandStretcher::Impl::writeOutput: " << "Buffer overrun on output: wrote " << written << " of " << qty << " samples" << endl; } outCount += written; return; } // the rest of this is only used during the first startSkip samples if (outCount + qty <= startSkip) { if (m_debugLevel > 1) { cerr << "qty = " << qty << ", startSkip = " << startSkip << ", outCount = " << outCount << ", discarding" << endl; } outCount += qty; return; } size_t off = startSkip - outCount; if (m_debugLevel > 1) { cerr << "qty = " << qty << ", startSkip = " << startSkip << ", outCount = " << outCount << ", writing " << qty - off << " from start offset " << off << endl; } to.write(from + off, qty - off); outCount += qty; } int RubberBandStretcher::Impl::available() const { if (m_threaded) { MutexLocker locker(&m_threadSetMutex); if (m_channelData.empty()) return 0; } else { if (m_channelData.empty()) return 0; } if (!m_threaded) { for (size_t c = 0; c < m_channels; ++c) { if (m_channelData[c]->inputSize >= 0) { // cerr << "available: m_done true" << endl; if (m_channelData[c]->inbuf->getReadSpace() > 0) { // cerr << "calling processChunks(" << c << ") from available" << endl; //!!! do we ever actually do this? if so, this method should not be const // ^^^ yes, we do sometimes -- e.g. when fed a very short file bool any = false, last = false; ((RubberBandStretcher::Impl *)this)->processChunks(c, any, last); } } } } size_t min = 0; bool consumed = true; bool haveResamplers = false; for (size_t i = 0; i < m_channels; ++i) { size_t availIn = m_channelData[i]->inbuf->getReadSpace(); size_t availOut = m_channelData[i]->outbuf->getReadSpace(); if (m_debugLevel > 2) { cerr << "available on channel " << i << ": " << availOut << " (waiting: " << availIn << ")" << endl; } if (i == 0 || availOut < min) min = availOut; if (!m_channelData[i]->outputComplete) consumed = false; if (m_channelData[i]->resampler) haveResamplers = true; } if (min == 0 && consumed) return -1; if (m_pitchScale == 1.0) return min; if (haveResamplers) return min; // resampling has already happened return int(floor(min / m_pitchScale)); } size_t RubberBandStretcher::Impl::retrieve(float *const *output, size_t samples) const { size_t got = samples; for (size_t c = 0; c < m_channels; ++c) { size_t gotHere = m_channelData[c]->outbuf->read(output[c], got); if (gotHere < got) { if (c > 0) { if (m_debugLevel > 0) { cerr << "RubberBandStretcher::Impl::retrieve: WARNING: channel imbalance detected" << endl; } } got = gotHere; } } return got; } }