/* * Copyright (C) 2014 Robin Gareus * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include "alsa_sequencer.h" #include "rt_thread.h" #include "pbd/error.h" #include "i18n.h" using namespace ARDOUR; #ifndef NDEBUG #define _DEBUGPRINT(STR) fprintf(stderr, STR); #else #define _DEBUGPRINT(STR) ; #endif AlsaSeqMidiIO::AlsaSeqMidiIO (const char *device, const bool input) : _state (-1) , _running (false) , _seq (0) , _pfds (0) , _sample_length_us (1e6 / 48000.0) , _period_length_us (1.024e6 / 48000.0) , _samples_per_period (1024) , _rb (0) { pthread_mutex_init (&_notify_mutex, 0); pthread_cond_init (&_notify_ready, 0); init (device, input); } AlsaSeqMidiIO::~AlsaSeqMidiIO () { if (_seq) { snd_seq_close (_seq); _seq = 0; } delete _rb; pthread_mutex_destroy (&_notify_mutex); pthread_cond_destroy (&_notify_ready); free (_pfds); } void AlsaSeqMidiIO::init (const char *device_name, const bool input) { if (snd_seq_open (&_seq, "hw", input ? SND_SEQ_OPEN_INPUT : SND_SEQ_OPEN_OUTPUT, 0) < 0) { _seq = 0; return; } if (snd_seq_set_client_name (_seq, "Ardour")) { _DEBUGPRINT("AlsaSeqMidiIO: cannot set client name.\n"); goto initerr; } _port = snd_seq_create_simple_port (_seq, "port", SND_SEQ_PORT_CAP_NO_EXPORT | (input ? SND_SEQ_PORT_CAP_WRITE : SND_SEQ_PORT_CAP_READ), SND_SEQ_PORT_TYPE_APPLICATION); if (_port < 0) { _DEBUGPRINT("AlsaSeqMidiIO: cannot create port.\n"); goto initerr; } _npfds = snd_seq_poll_descriptors_count (_seq, input ? POLLIN : POLLOUT); if (_npfds < 1) { _DEBUGPRINT("AlsaSeqMidiIO: no poll descriptor(s).\n"); goto initerr; } _pfds = (struct pollfd*) malloc (_npfds * sizeof(struct pollfd)); snd_seq_poll_descriptors (_seq, _pfds, _npfds, input ? POLLIN : POLLOUT); snd_seq_addr_t port; if (snd_seq_parse_address (_seq, &port, device_name) < 0) { _DEBUGPRINT("AlsaSeqMidiIO: cannot resolve hardware port.\n"); goto initerr; } if (input) { if (snd_seq_connect_from (_seq, _port, port.client, port.port) < 0) { _DEBUGPRINT("AlsaSeqMidiIO: cannot connect port.\n"); goto initerr; } } else { if (snd_seq_connect_to (_seq, _port, port.client, port.port) < 0) { _DEBUGPRINT("AlsaSeqMidiIO: cannot connect port.\n"); goto initerr; } } snd_seq_nonblock(_seq, 1); // MIDI (hw port) 31.25 kbaud // worst case here is 8192 SPP and 8KSPS for which we'd need // 4000 bytes sans MidiEventHeader. // since we're not always in sync, let's use 4096. _rb = new RingBuffer(4096 + 4096 * sizeof(MidiEventHeader)); _state = 0; return; initerr: PBD::error << _("AlsaSeqMidiIO: Device initialization failed.") << endmsg; snd_seq_close (_seq); _seq = 0; return; } static void * pthread_process (void *arg) { AlsaSeqMidiIO *d = static_cast(arg); d->main_process_thread (); pthread_exit (0); return 0; } int AlsaSeqMidiIO::start () { if (_realtime_pthread_create (SCHED_FIFO, -21, 100000, &_main_thread, pthread_process, this)) { if (pthread_create (&_main_thread, NULL, pthread_process, this)) { PBD::error << _("AlsaSeqMidiIO: Failed to create process thread.") << endmsg; return -1; } else { PBD::warning << _("AlsaSeqMidiIO: Cannot acquire realtime permissions.") << endmsg; } } int timeout = 5000; while (!_running && --timeout > 0) { Glib::usleep (1000); } if (timeout == 0 || !_running) { return -1; } return 0; } int AlsaSeqMidiIO::stop () { void *status; if (!_running) { return 0; } _running = false; pthread_mutex_lock (&_notify_mutex); pthread_cond_signal (&_notify_ready); pthread_mutex_unlock (&_notify_mutex); if (pthread_join (_main_thread, &status)) { PBD::error << _("AlsaSeqMidiIO: Failed to terminate.") << endmsg; return -1; } return 0; } void AlsaSeqMidiIO::setup_timing (const size_t samples_per_period, const float samplerate) { _period_length_us = (double) samples_per_period * 1e6 / samplerate; _sample_length_us = 1e6 / samplerate; _samples_per_period = samples_per_period; } void AlsaSeqMidiIO::sync_time (const uint64_t tme) { // TODO consider a PLL, if this turns out to be the bottleneck for jitter // also think about using // snd_pcm_status_get_tstamp() and snd_rawmidi_status_get_tstamp() // instead of monotonic clock. #ifdef DEBUG_TIMING double tdiff = (_clock_monotonic + _period_length_us - tme) / 1000.0; if (abs(tdiff) >= .05) { printf("AlsaSeqMidiIO MJ: %.1f ms\n", tdiff); } #endif _clock_monotonic = tme; } /////////////////////////////////////////////////////////////////////////////// // select sleeps _at most_ (compared to usleep() which sleeps at least) static void select_sleep (uint32_t usec) { if (usec <= 10) return; fd_set fd; int max_fd=0; struct timeval tv; tv.tv_sec = usec / 1000000; tv.tv_usec = usec % 1000000; FD_ZERO (&fd); select (max_fd, &fd, NULL, NULL, &tv); } /////////////////////////////////////////////////////////////////////////////// AlsaSeqMidiOut::AlsaSeqMidiOut (const char *device) : AlsaSeqMidiIO (device, false) { } int AlsaSeqMidiOut::send_event (const pframes_t time, const uint8_t *data, const size_t size) { const uint32_t buf_size = sizeof (MidiEventHeader) + size; if (_rb->write_space() < buf_size) { _DEBUGPRINT("AlsaSeqMidiOut: ring buffer overflow\n"); return -1; } struct MidiEventHeader h (_clock_monotonic + time * _sample_length_us, size); _rb->write ((uint8_t*) &h, sizeof(MidiEventHeader)); _rb->write (data, size); if (pthread_mutex_trylock (&_notify_mutex) == 0) { pthread_cond_signal (&_notify_ready); pthread_mutex_unlock (&_notify_mutex); } return 0; } #define MaxAlsaSeqEventSize 64 void * AlsaSeqMidiOut::main_process_thread () { _running = true; bool need_drain = false; snd_midi_event_t *alsa_codec = NULL; snd_midi_event_new (MaxAlsaSeqEventSize, &alsa_codec); pthread_mutex_lock (&_notify_mutex); while (_running) { bool have_data = false; struct MidiEventHeader h(0,0); uint8_t data[MaxAlsaSeqEventSize]; const uint32_t read_space = _rb->read_space(); if (read_space > sizeof(MidiEventHeader)) { if (_rb->read ((uint8_t*)&h, sizeof(MidiEventHeader)) != sizeof(MidiEventHeader)) { _DEBUGPRINT("AlsaSeqMidiOut: Garbled MIDI EVENT HEADER!!\n"); break; } assert (read_space >= h.size); if (h.size > MaxAlsaSeqEventSize) { _rb->increment_read_idx (h.size); _DEBUGPRINT("AlsaSeqMidiOut: MIDI event too large!\n"); continue; } if (_rb->read (&data[0], h.size) != h.size) { _DEBUGPRINT("AlsaSeqMidiOut: Garbled MIDI EVENT DATA!!\n"); break; } have_data = true; } if (!have_data) { if (need_drain) { snd_seq_drain_output (_seq); need_drain = false; } pthread_cond_wait (&_notify_ready, &_notify_mutex); continue; } snd_seq_event_t alsa_event; snd_seq_ev_clear (&alsa_event); snd_midi_event_reset_encode (alsa_codec); if (!snd_midi_event_encode (alsa_codec, data, h.size, &alsa_event)) { PBD::error << _("AlsaSeqMidiOut: Invalid Midi Event.") << endmsg; continue; } snd_seq_ev_set_source (&alsa_event, _port); snd_seq_ev_set_subs (&alsa_event); snd_seq_ev_set_direct (&alsa_event); uint64_t now = g_get_monotonic_time(); while (h.time > now + 500) { if (need_drain) { snd_seq_drain_output (_seq); need_drain = false; } else { select_sleep(h.time - now); } now = g_get_monotonic_time(); } retry: int perr = poll (_pfds, _npfds, 10 /* ms */); if (perr < 0) { PBD::error << _("AlsaSeqMidiOut: Error polling device. Terminating Midi Thread.") << endmsg; break; } if (perr == 0) { _DEBUGPRINT("AlsaSeqMidiOut: poll() timed out.\n"); goto retry; } ssize_t err = snd_seq_event_output(_seq, &alsa_event); if ((err == -EAGAIN)) { snd_seq_drain_output (_seq); goto retry; } if (err == -EWOULDBLOCK) { select_sleep (1000); goto retry; } if (err < 0) { PBD::error << _("AlsaSeqMidiOut: write failed. Terminating Midi Thread.") << endmsg; break; } need_drain = true; } pthread_mutex_unlock (&_notify_mutex); if (alsa_codec) { snd_midi_event_free(alsa_codec); } _DEBUGPRINT("AlsaSeqMidiOut: MIDI OUT THREAD STOPPED\n"); return 0; } /////////////////////////////////////////////////////////////////////////////// AlsaSeqMidiIn::AlsaSeqMidiIn (const char *device) : AlsaSeqMidiIO (device, true) { } size_t AlsaSeqMidiIn::recv_event (pframes_t &time, uint8_t *data, size_t &size) { const uint32_t read_space = _rb->read_space(); struct MidiEventHeader h(0,0); if (read_space <= sizeof(MidiEventHeader)) { return 0; } #if 1 // check if event is in current cycle RingBuffer::rw_vector vector; _rb->get_read_vector(&vector); if (vector.len[0] >= sizeof(MidiEventHeader)) { memcpy((uint8_t*)&h, vector.buf[0], sizeof(MidiEventHeader)); } else { if (vector.len[0] > 0) { memcpy ((uint8_t*)&h, vector.buf[0], vector.len[0]); } memcpy (((uint8_t*)&h) + vector.len[0], vector.buf[1], sizeof(MidiEventHeader) - vector.len[0]); } if (h.time >= _clock_monotonic + _period_length_us ) { #ifdef DEBUG_TIMING printf("AlsaSeqMidiIn DEBUG: POSTPONE EVENT TO NEXT CYCLE: %.1f spl\n", ((h.time - _clock_monotonic) / _sample_length_us)); #endif return 0; } _rb->increment_read_idx (sizeof(MidiEventHeader)); #else if (_rb->read ((uint8_t*)&h, sizeof(MidiEventHeader)) != sizeof(MidiEventHeader)) { _DEBUGPRINT("AlsaSeqMidiIn::recv_event Garbled MIDI EVENT HEADER!!\n"); return 0; } #endif assert (h.size > 0); if (h.size > size) { _DEBUGPRINT("AlsaSeqMidiIn::recv_event MIDI event too large!\n"); _rb->increment_read_idx (h.size); return 0; } if (_rb->read (&data[0], h.size) != h.size) { _DEBUGPRINT("AlsaSeqMidiIn::recv_event Garbled MIDI EVENT DATA!!\n"); return 0; } if (h.time < _clock_monotonic) { #ifdef DEBUG_TIMING printf("AlsaSeqMidiIn DEBUG: MIDI TIME < 0 %.1f spl\n", ((_clock_monotonic - h.time) / -_sample_length_us)); #endif time = 0; } else if (h.time >= _clock_monotonic + _period_length_us ) { #ifdef DEBUG_TIMING printf("AlsaSeqMidiIn DEBUG: MIDI TIME > PERIOD %.1f spl\n", ((h.time - _clock_monotonic) / _sample_length_us)); #endif time = _samples_per_period - 1; } else { time = floor ((h.time - _clock_monotonic) / _sample_length_us); } assert(time < _samples_per_period); size = h.size; return h.size; } int AlsaSeqMidiIn::queue_event (const uint64_t time, const uint8_t *data, const size_t size) { const uint32_t buf_size = sizeof(MidiEventHeader) + size; if (size == 0) { return -1; } if (_rb->write_space() < buf_size) { _DEBUGPRINT("AlsaSeqMidiIn: ring buffer overflow\n"); return -1; } struct MidiEventHeader h (time, size); _rb->write ((uint8_t*) &h, sizeof(MidiEventHeader)); _rb->write (data, size); return 0; } void * AlsaSeqMidiIn::main_process_thread () { _running = true; bool do_poll = true; snd_midi_event_t *alsa_codec = NULL; snd_midi_event_new (MaxAlsaSeqEventSize, &alsa_codec); while (_running) { if (do_poll) { snd_seq_poll_descriptors (_seq, _pfds, _npfds, POLLIN); int perr = poll (_pfds, _npfds, 100 /* ms */); if (perr < 0) { PBD::error << _("AlsaSeqMidiIn: Error polling device. Terminating Midi Thread.") << endmsg; break; } if (perr == 0) { continue; } } snd_seq_event_t *event; uint64_t time = g_get_monotonic_time(); ssize_t err = snd_seq_event_input (_seq, &event); if ((err == -EAGAIN) || (err == -EWOULDBLOCK)) { do_poll = true; continue; } if (err == -ENOSPC) { PBD::error << _("AlsaSeqMidiIn: FIFO overrun.") << endmsg; do_poll = true; continue; } if (err < 0) { PBD::error << _("AlsaSeqMidiIn: read error. Terminating Midi") << endmsg; break; } uint8_t data[MaxAlsaSeqEventSize]; snd_midi_event_reset_decode (alsa_codec); ssize_t size = snd_midi_event_decode (alsa_codec, data, sizeof(data), event); if (size > 0) { queue_event (time, data, size); } do_poll = (0 == err); } if (alsa_codec) { snd_midi_event_free(alsa_codec); } _DEBUGPRINT("AlsaSeqMidiIn: MIDI IN THREAD STOPPED\n"); return 0; }