the rest from `tools/convert_boost.sh`.
* replace boost::function, boost::bind with std::function and std::bind.
This required some manual fixes, notably std::placeholders,
some static_casts<>, and boost::function::clear -> = {}.
Previously the port-engine was a LIFO. Changes were pushed back
and then popped-back. This causes issues when re-connecting
Transport Masters.
The GUI does the following when changing connections:
1. disconnect all
2. connect to new port
which lead to TransportMaster::connection_handler being called
in reverse order: connect, disconnect, and the transport
master was assumed to not be connected.
--
Now connections queue is a FIFO and code was consolidated.
(Note, we cannot use a std::deque because it does not support
memory pre-allocation with ::reserve)
Variables by these names are only used from the local wscript and when
running "waf configure", which already for other reasons only can run at
the top-level.
These variables are thus not mandatory and not used.
Done with ad hoc scripting hacks processing unused imports found by pyflakes:
for f in $( find * -name wscript ); do echo; pyflakes $f; done | grep 'waflib.Logs.* but unused' | cut -d: -f1 | while read f; do sed -i 's/^import waflib.Logs as Logs,/import/g' $f; done
for f in $( find * -name wscript ); do echo; pyflakes $f; done | grep 'waflib.Options.* but unused' | cut -d: -f1 | while read f; do sed -i 's/import waflib.Options as Options, /import /g' $f; done
for f in $( find * -name wscript ); do echo; pyflakes $f; done | grep 'waflib.Options.* but unused' | cut -d: -f1 | while read f; do sed -i 's/^from waflib import Options,/from waflib import/g' $f; done
for f in $( find * -name wscript ); do echo; pyflakes $f; done | grep ' imported but unused$' | sed "s/^\([^:]*\):[0-9]*:[0-9]* '\(.*\)'.*/\1 \2/g" | while read f lib; do sed -i "/^import $lib$/d" $f; done
for f in $( find * -name wscript ); do echo; pyflakes $f; done | grep 'waflib.Options.* but unused' | cut -d: -f1 | while read f; do sed -i '/from waflib import Options$/d' $f; done
for f in $( find * -name wscript ); do echo; pyflakes $f; done | grep 'waflib.TaskGen.* but unused' | cut -d: -f1 | while read f; do sed -i '/from waflib import TaskGen$/d' $f; done
for f in $( find * -name wscript ); do echo; pyflakes $f; done | grep 'waflib.Task.Task.* but unused' | cut -d: -f1 | while read f; do sed -i '/^from waflib.Task import Task$/d' $f; done
for f in $( find * -name wscript ); do echo; pyflakes $f; done | grep 'waflib.Tools.winres.* but unused' | cut -d: -f1 | while read f; do sed -i '/^from waflib.Tools import winres$/d' $f; done
for f in $( find * -name wscript ); do echo; pyflakes $f; done | grep 'waflib.Utils.* but unused' | cut -d: -f1 | while read f; do sed -i '/^import waflib.Utils as Utils$/d' $f; done
This is mostly a simple lexical search+replace but the absence of operator< for
std::weak_ptr<T> leads to some complications, particularly with Evoral::Sequence
and ExportPortChannel.
It can happen that the main AlsaAudioBackend::_device_reservation
is still busy while I/O devices are set. In this case a
dedicated AlsaDeviceReservation needs to be used which can fail
silently.
A common example is disconnecting a USB device while it is in
use. The Halted signal can show the session dialog, which calls
set_input_device_name before the device reservation of the
unplugged device terminated.
ALSA backend modified the internal state when different devices
were used, re-assigning one (usually input-device) to "None"
when it's resampled. This lead to EngineHints not matching the
EngineState, and autostart was disabled, and a dialog
"Engine I/O device has changed since you last opened this session."
Querying available buffersizes and sample-rates requires access
to the device. Almost all ALSA devices are limited to
a single user-space application so we unconditionally try
to request access to the device.
PBD::Transmitter is neither thread-safe nor rt-safe. This likely
fixes a crash on macOS when process-threads are started.
Many threads simultaneously enter coreaudio_process_thread() and
log a message calling `PBD::info << .. << endmsg` simultaneously.
In all years of using these assert()s never triggered. Besides
there are valid_port() tests in other strategic locations that
are not periodically hit in realtime context.
Found via `codespell -q 3 -S *.po,./share/patchfiles,./libs -L ba,buss,busses,doubleclick,hsi,ontop,ro,seh,siz,sord,sur,te,trough,ue`
Follow-up to 364f2f078
"While 'atomic' has a volatile qualifier, this is a historical
artifact and the pointer passed to it should not be volatile."
Furthermore "It is very important that all accesses to a
particular integer or pointer be performed using only this API"
(from https://developer.gnome.org/glib/2.68/glib-Atomic-Operations.html)
Hence initialization of atomic variables is changed to also use
this API, instead of directly initializing the value.
This also fixes a few cases where atomic variables were
accessed directly.
see also libs/pbd/pbd/g_atomic_compat.h