Xinterpolation.*: Add old fixed point and double linear interpolation as alternatives

git-svn-id: svn://localhost/ardour2/branches/3.0@5258 d708f5d6-7413-0410-9779-e7cbd77b26cf
This commit is contained in:
Hans Baier 2009-06-23 09:50:39 +00:00
parent 47e5690552
commit dd84d5312e
8 changed files with 385 additions and 76 deletions

View file

@ -146,7 +146,7 @@ class AudioDiskstream : public Diskstream
}
}
LibSamplerateInterpolation interpolation;
FixedPointLinearInterpolation interpolation;
XMLNode* deprecated_io_node;

View file

@ -8,18 +8,90 @@
namespace ARDOUR {
class LibSamplerateInterpolation {
protected:
double _speed;
class Interpolation {
protected:
double _speed, _target_speed;
public:
Interpolation () { _speed = 1.0; }
void set_speed (double new_speed) { _speed = new_speed; }
void set_target_speed (double new_speed) { _target_speed = new_speed; }
double target_speed() const { return _target_speed; }
double speed() const { return _speed; }
void add_channel_to (int input_buffer_size, int output_buffer_size) {}
void remove_channel_from () {}
nframes_t interpolate (int channel, nframes_t nframes, Sample* input, Sample* output) {}
void reset () {}
};
// 40.24 fixpoint math
#define FIXPOINT_ONE 0x1000000
class FixedPointLinearInterpolation : public Interpolation {
protected:
/// speed in fixed point math
uint64_t phi;
/// target speed in fixed point math
uint64_t target_phi;
std::vector<uint64_t> last_phase;
// Fixed point is just an integer with an implied scaling factor.
// In 40.24 the scaling factor is 2^24 = 16777216,
// so a value of 10*2^24 (in integer space) is equivalent to 10.0.
//
// The advantage is that addition and modulus [like x = (x + y) % 2^40]
// have no rounding errors and no drift, and just require a single integer add.
// (swh)
std::vector<SRC_STATE*> state;
std::vector<SRC_DATA*> data;
int error;
void reset_state ();
public:
static const int64_t fractional_part_mask = 0xFFFFFF;
static const Sample binary_scaling_factor = 16777216.0f;
public:
FixedPointLinearInterpolation () : phi (FIXPOINT_ONE), target_phi (FIXPOINT_ONE) {}
void set_speed (double new_speed) {
target_phi = (uint64_t) (FIXPOINT_ONE * fabs(new_speed));
phi = target_phi;
}
void add_channel_to (int input_buffer_size, int output_buffer_size);
void remove_channel_from ();
nframes_t interpolate (int channel, nframes_t nframes, Sample* input, Sample* output);
void reset ();
};
class LinearInterpolation : public Interpolation {
protected:
// the idea is that when the speed is not 1.0, we have to
// interpolate between samples and then we have to store where we thought we were.
// rather than being at sample N or N+1, we were at N+0.8792922
std::vector<double> phase;
public:
void add_channel_to (int input_buffer_size, int output_buffer_size);
void remove_channel_from ();
nframes_t interpolate (int channel, nframes_t nframes, Sample* input, Sample* output);
void reset ();
};
class LibSamplerateInterpolation : public Interpolation {
protected:
std::vector<SRC_STATE*> state;
std::vector<SRC_DATA*> data;
int error;
void reset_state ();
public:
LibSamplerateInterpolation ();
~LibSamplerateInterpolation ();
@ -31,8 +103,9 @@ public:
void remove_channel_from ();
nframes_t interpolate (int channel, nframes_t nframes, Sample* input, Sample* output);
void reset() { reset_state (); }
};
} // namespace ARDOUR
#endif
#endif

View file

@ -1011,7 +1011,7 @@ class Session : public PBD::StatefulDestructible, public boost::noncopyable
volatile double _transport_speed;
double _last_transport_speed;
double _target_transport_speed;
LibSamplerateInterpolation interpolation;
FixedPointLinearInterpolation interpolation;
bool auto_play_legal;
nframes_t _last_slave_transport_frame;

View file

@ -4,8 +4,141 @@
using namespace ARDOUR;
LibSamplerateInterpolation::LibSamplerateInterpolation() : _speed (1.0L), state (0)
nframes_t
FixedPointLinearInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output)
{
// the idea behind phase is that when the speed is not 1.0, we have to
// interpolate between samples and then we have to store where we thought we were.
// rather than being at sample N or N+1, we were at N+0.8792922
// so the "phase" element, if you want to think about this way,
// varies from 0 to 1, representing the "offset" between samples
uint64_t phase = last_phase[channel];
// acceleration
int64_t phi_delta;
// phi = fixed point speed
if (phi != target_phi) {
phi_delta = ((int64_t)(target_phi - phi)) / nframes;
} else {
phi_delta = 0;
}
// index in the input buffers
nframes_t i = 0;
for (nframes_t outsample = 0; outsample < nframes; ++outsample) {
i = phase >> 24;
Sample fractional_phase_part = (phase & fractional_part_mask) / binary_scaling_factor;
if (input && output) {
// Linearly interpolate into the output buffer
// using fixed point math
output[outsample] =
input[i] * (1.0f - fractional_phase_part) +
input[i+1] * fractional_phase_part;
}
phase += phi + phi_delta;
}
last_phase[channel] = (phase & fractional_part_mask);
// playback distance
return i;
}
void
FixedPointLinearInterpolation::add_channel_to (int input_buffer_size, int output_buffer_size)
{
last_phase.push_back (0);
}
void
FixedPointLinearInterpolation::remove_channel_from ()
{
last_phase.pop_back ();
}
void
FixedPointLinearInterpolation::reset()
{
for(int i = 0; i <= last_phase.size(); i++) {
last_phase[i] = 0;
}
}
nframes_t
LinearInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output)
{
// index in the input buffers
nframes_t i = 0;
double acceleration;
double distance = 0.0;
if (_speed != _target_speed) {
acceleration = _target_speed - _speed;
} else {
acceleration = 0.0;
}
printf("phase before: %lf\n", phase[channel]);
distance = phase[channel];
for (nframes_t outsample = 0; outsample < nframes; ++outsample) {
i = distance;
Sample fractional_phase_part = distance - i;
if (fractional_phase_part >= 1.0) {
fractional_phase_part -= 1.0;
i++;
}
//printf("I: %u, distance: %lf, fractional_phase_part: %lf\n", i, distance, fractional_phase_part);
if (input && output) {
// Linearly interpolate into the output buffer
output[outsample] =
input[i] * (1.0f - fractional_phase_part) +
input[i+1] * fractional_phase_part;
}
//printf("distance before: %lf\n", distance);
distance += _speed + acceleration;
//printf("distance after: %lf, _speed: %lf\n", distance, _speed);
}
printf("before assignment: i: %d, distance: %lf\n", i, distance);
i = floor(distance);
printf("after assignment: i: %d, distance: %16lf\n", i, distance);
phase[channel] = distance - floor(distance);
printf("speed: %16lf, i after: %d, distance after: %16lf, phase after: %16lf\n", _speed, i, distance, phase[channel]);
return i;
}
void
LinearInterpolation::add_channel_to (int input_buffer_size, int output_buffer_size)
{
phase.push_back (0.0);
}
void
LinearInterpolation::remove_channel_from ()
{
phase.pop_back ();
}
void
LinearInterpolation::reset()
{
for(int i = 0; i <= phase.size(); i++) {
phase[i] = 0.0;
}
}
LibSamplerateInterpolation::LibSamplerateInterpolation() : state (0)
{
_speed = 1.0;
}
LibSamplerateInterpolation::~LibSamplerateInterpolation()
@ -77,12 +210,12 @@ LibSamplerateInterpolation::interpolate (int channel, nframes_t nframes, Sample
return 0;
}
data[channel]->data_in = input;
data[channel]->data_out = output;
data[channel]->data_in = input;
data[channel]->data_out = output;
data[channel]->input_frames = nframes * _speed;
data[channel]->output_frames = nframes;
data[channel]->src_ratio = 1.0/_speed;
data[channel]->src_ratio = 1.0/_speed;
if ((error = src_process (state[channel], data[channel]))) {
printf ("\nError : %s\n\n", src_strerror (error));

View file

@ -147,6 +147,8 @@ Session::Session (AudioEngine &eng,
{
bool new_session;
interpolation.add_channel_to (0, 0);
if (!eng.connected()) {
throw failed_constructor();
}
@ -231,6 +233,8 @@ Session::Session (AudioEngine &eng,
{
bool new_session;
interpolation.add_channel_to (0, 0);
if (!eng.connected()) {
throw failed_constructor();
}

View file

@ -327,8 +327,7 @@ Session::process_with_events (nframes_t nframes)
} else {
interpolation.set_target_speed (_target_transport_speed);
interpolation.set_speed (_transport_speed);
//FIXME frames_moved = (long) interpolation.interpolate (nframes, 0, 0);
frames_moved = _transport_speed * nframes;
frames_moved = (long) interpolation.interpolate (0, nframes, 0, 0);
}
end_frame = _transport_frame + (nframes_t)frames_moved;
@ -849,8 +848,7 @@ Session::process_without_events (nframes_t nframes)
} else {
interpolation.set_target_speed (_target_transport_speed);
interpolation.set_speed (_transport_speed);
//FIXME frames_moved = (long) interpolation.interpolate (nframes, 0, 0);
frames_moved = _transport_speed * nframes;
frames_moved = (long) interpolation.interpolate (0, nframes, 0, 0);
}
if (process_routes (nframes)) {

View file

@ -9,63 +9,160 @@ using namespace ARDOUR;
void
InterpolationTest::linearInterpolationTest ()
{
cout << "\nLinear Interpolation Test\n";
cout << "\nSpeed: 1.0";
interpolation.set_speed (1.0);
nframes_t result = interpolation.interpolate (0, NUM_SAMPLES, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES * interpolation.speed()), result);
nframes_t result = 0;
cout << "\nLinear Interpolation Test\n";
cout << "\nSpeed: 1/3";
for (int i = 0; i < NUM_SAMPLES - 1024;) {
linear.set_speed (double(1.0)/double(3.0));
linear.set_target_speed (double(1.0)/double(3.0));
printf ("Interpolate: input: %d, output: %d, i: %d\n", input + i, output + i, i);
result = linear.interpolate (0, 1024, input + i, output + i);
printf ("Result: %d\n", result);
//CPPUNIT_ASSERT_EQUAL ((uint32_t)((NUM_SAMPLES - 100) * interpolation.speed()), result);
i += result;
}
cout << "\nSpeed: 1.0";
linear.reset();
linear.set_speed (1.0);
linear.set_target_speed (linear.speed());
result = linear.interpolate (0, NUM_SAMPLES, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES * linear.speed()), result);
for (int i = 0; i < NUM_SAMPLES; i += INTERVAL) {
CPPUNIT_ASSERT_EQUAL (1.0f, output[i]);
}
cout << "\nSpeed: 0.5";
linear.reset();
linear.set_speed (0.5);
linear.set_target_speed (linear.speed());
result = linear.interpolate (0, NUM_SAMPLES, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES * linear.speed()), result);
for (int i = 0; i < NUM_SAMPLES; i += (INTERVAL / linear.speed() +0.5)) {
CPPUNIT_ASSERT_EQUAL (1.0f, output[i]);
}
cout << "\nSpeed: 0.2";
linear.reset();
linear.set_speed (0.2);
linear.set_target_speed (linear.speed());
result = linear.interpolate (0, NUM_SAMPLES, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES * linear.speed()), result);
cout << "\nSpeed: 0.02";
linear.reset();
linear.set_speed (0.02);
linear.set_target_speed (linear.speed());
result = linear.interpolate (0, NUM_SAMPLES, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES * linear.speed()), result);
cout << "\nSpeed: 0.002";
linear.reset();
linear.set_speed (0.002);
linear.set_target_speed (linear.speed());
result = linear.interpolate (0, NUM_SAMPLES, input, output);
linear.speed();
printf("BOOM!: expexted: %d, result = %d\n", (nframes_t)(NUM_SAMPLES * linear.speed()), result);
CPPUNIT_ASSERT_EQUAL ((nframes_t)(NUM_SAMPLES * linear.speed()), result);
cout << "\nSpeed: 2.0";
linear.reset();
linear.set_speed (2.0);
linear.set_target_speed (linear.speed());
result = linear.interpolate (0, NUM_SAMPLES / 2, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES / 2 * linear.speed()), result);
for (int i = 0; i < NUM_SAMPLES / 2; i += (INTERVAL / linear.speed() +0.5)) {
CPPUNIT_ASSERT_EQUAL (1.0f, output[i]);
}
cout << "\nSpeed: 10.0";
linear.set_speed (10.0);
linear.set_target_speed (linear.speed());
result = linear.interpolate (0, NUM_SAMPLES / 10, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES / 10 * linear.speed()), result);
for (int i = 0; i < NUM_SAMPLES / 10; i += (INTERVAL / linear.speed() +0.5)) {
CPPUNIT_ASSERT_EQUAL (1.0f, output[i]);
}
/*
for (int i=0; i < NUM_SAMPLES; ++i) {
cout << "input[" << i << "] = " << input[i] << " output[" << i << "] = " << output[i] << endl;
}
*/
}
void
InterpolationTest::libSamplerateInterpolationTest ()
{
nframes_t result;
cout << "\nLibSamplerate Interpolation Test\n";
/*
cout << "\nSpeed: 1.0";
interpolation.set_speed (1.0);
for (int i = 0; i < NUM_SAMPLES;) {
interpolation.set_speed (1.0);
result = interpolation.interpolate (0, INTERVAL/10, input + i, output + i);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(INTERVAL/10 * interpolation.speed()), result);
i += result;
}
for (int i = 0; i < NUM_SAMPLES; i += INTERVAL) {
CPPUNIT_ASSERT_EQUAL (1.0f, output[i+1]);
}
*/
for (int i=0; i < NUM_SAMPLES; ++i) {
cout << "input[" << i << "] = " << input[i] << " output[" << i << "] = " << output[i] << endl;
cout << "\nSpeed: 0.5";
for (int i = 0; i < NUM_SAMPLES;) {
interpolation.set_speed (0.5);
printf ("Interpolate: input: %d, output: %d, i: %d\n", input + i, output + i, i);
result = interpolation.interpolate (0, NUM_SAMPLES - 100, input + i, output + i);
printf ("Result: %d\n", result);
//CPPUNIT_ASSERT_EQUAL ((uint32_t)((NUM_SAMPLES - 100) * interpolation.speed()), result);
//i += result;
break;
}
for (int i = 0; i < NUM_SAMPLES; i += INTERVAL) {
CPPUNIT_ASSERT_EQUAL (1.0f, output[i+1]);
}
cout << "\nSpeed: 0.5";
interpolation.set_speed (0.5);
result = interpolation.interpolate (0, NUM_SAMPLES, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES * interpolation.speed()), result);
for (int i = 0; i < NUM_SAMPLES; i += (INTERVAL / interpolation.speed() +0.5)) {
CPPUNIT_ASSERT_EQUAL (1.0f, output[i]);
}
cout << "\nSpeed: 0.2";
interpolation.set_speed (0.2);
result = interpolation.interpolate (0, NUM_SAMPLES, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES * interpolation.speed()), result);
cout << "\nSpeed: 0.02";
interpolation.set_speed (0.02);
result = interpolation.interpolate (0, NUM_SAMPLES, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES * interpolation.speed()), result);
cout << "\nSpeed: 0.002";
interpolation.set_speed (0.002);
result = interpolation.interpolate (0, NUM_SAMPLES, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES * interpolation.speed()), result);
cout << "\nSpeed: 2.0";
interpolation.set_speed (2.0);
result = interpolation.interpolate (0, NUM_SAMPLES / 2, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES / 2 * interpolation.speed()), result);
for (int i = 0; i < NUM_SAMPLES / 2; i += (INTERVAL / interpolation.speed() +0.5)) {
CPPUNIT_ASSERT_EQUAL (1.0f, output[i]);
}
cout << "\nSpeed: 10.0";
interpolation.set_speed (10.0);
result = interpolation.interpolate (0, NUM_SAMPLES / 10, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES / 10 * interpolation.speed()), result);
for (int i = 0; i < NUM_SAMPLES / 10; i += (INTERVAL / interpolation.speed() +0.5)) {
CPPUNIT_ASSERT_EQUAL (1.0f, output[i]);
}
/*
for (int i=0; i < NUM_SAMPLES; ++i) {
cout << "input[" << i << "] = " << input[i] << " output[" << i << "] = " << output[i] << endl;
for (int i=0; i < NUM_SAMPLES; ++i) {
cout << "input[" << i << "] = " << input[i] << " output[" << i << "] = " << output[i] << endl;
}
*/
cout << "\nSpeed: 0.2";
interpolation.set_speed (0.2);
result = interpolation.interpolate (0, NUM_SAMPLES, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES * interpolation.speed()), result);
cout << "\nSpeed: 0.02";
interpolation.set_speed (0.02);
result = interpolation.interpolate (0, NUM_SAMPLES, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES * interpolation.speed()), result);
cout << "\nSpeed: 0.002";
interpolation.set_speed (0.002);
result = interpolation.interpolate (0, NUM_SAMPLES, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES * interpolation.speed()), result);
cout << "\nSpeed: 2.0";
interpolation.set_speed (2.0);
result = interpolation.interpolate (0, NUM_SAMPLES / 2, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES / 2 * interpolation.speed()), result);
for (int i = 0; i < NUM_SAMPLES / 2; i += (INTERVAL / interpolation.speed() +0.5)) {
CPPUNIT_ASSERT_EQUAL (1.0f, output[i]);
}
cout << "\nSpeed: 10.0";
interpolation.set_speed (10.0);
result = interpolation.interpolate (0, NUM_SAMPLES / 10, input, output);
CPPUNIT_ASSERT_EQUAL ((uint32_t)(NUM_SAMPLES / 10 * interpolation.speed()), result);
for (int i = 0; i < NUM_SAMPLES / 10; i += (INTERVAL / interpolation.speed() +0.5)) {
CPPUNIT_ASSERT_EQUAL (1.0f, output[i]);
}
/*
for (int i=0; i < NUM_SAMPLES; ++i) {
cout << "input[" << i << "] = " << input[i] << " output[" << i << "] = " << output[i] << endl;
}
*/
}

View file

@ -27,15 +27,17 @@ class InterpolationTest : public CppUnit::TestFixture
{
CPPUNIT_TEST_SUITE(InterpolationTest);
CPPUNIT_TEST(linearInterpolationTest);
//CPPUNIT_TEST(libSamplerateInterpolationTest);
CPPUNIT_TEST_SUITE_END();
#define NUM_SAMPLES 100000000
#define NUM_SAMPLES 1000000
#define INTERVAL 100
ARDOUR::Sample input[NUM_SAMPLES];
ARDOUR::Sample output[NUM_SAMPLES];
ARDOUR::Interpolation interpolation;
ARDOUR::LinearInterpolation linear;
ARDOUR::LibSamplerateInterpolation interpolation;
public:
@ -48,6 +50,7 @@ class InterpolationTest : public CppUnit::TestFixture
}
output[i] = 0.0f;
}
linear.add_channel_to (NUM_SAMPLES, NUM_SAMPLES);
interpolation.add_channel_to (NUM_SAMPLES, NUM_SAMPLES);
}
@ -55,5 +58,6 @@ class InterpolationTest : public CppUnit::TestFixture
}
void linearInterpolationTest();
void libSamplerateInterpolationTest();
};