update to rubberband 1.2

git-svn-id: svn://localhost/ardour2/branches/2.0-ongoing@3576 d708f5d6-7413-0410-9779-e7cbd77b26cf
This commit is contained in:
Paul Davis 2008-07-10 11:30:19 +00:00
parent 94f3ead75e
commit ce601905c0
51 changed files with 4092 additions and 979 deletions

View file

@ -251,7 +251,6 @@ Editor::time_fx (RegionSelection& regions, float val, bool pitching)
bool realtime = false;
bool precise = false;
bool peaklock = true;
bool softening = true;
bool longwin = false;
bool shortwin = false;
string txt;
@ -286,7 +285,6 @@ Editor::time_fx (RegionSelection& regions, float val, bool pitching)
if (realtime) options |= RubberBandStretcher::OptionProcessRealTime;
if (precise) options |= RubberBandStretcher::OptionStretchPrecise;
if (!peaklock) options |= RubberBandStretcher::OptionPhaseIndependent;
if (!softening) options |= RubberBandStretcher::OptionPhasePeakLocked;
if (longwin) options |= RubberBandStretcher::OptionWindowLong;
if (shortwin) options |= RubberBandStretcher::OptionWindowShort;

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -14,18 +14,44 @@
#ifndef _RUBBERBANDSTRETCHER_H_
#define _RUBBERBANDSTRETCHER_H_
#include "TimeStretcher.h"
#define RUBBERBAND_VERSION "1.2.0-gpl"
#define RUBBERBAND_API_MAJOR_VERSION 2
#define RUBBERBAND_API_MINOR_VERSION 0
#include <vector>
/**
* @mainpage RubberBand
*
* The Rubber Band API is contained in the single class
* RubberBand::RubberBandStretcher.
*
* Threading notes for real-time applications:
*
* Multiple instances of RubberBandStretcher may be created and used
* in separate threads concurrently. However, for any single instance
* of RubberBandStretcher, you may not call process() more than once
* concurrently, and you may not change the time or pitch ratio while
* a process() call is being executed (if the stretcher was created in
* "real-time mode"; in "offline mode" you can't change the ratios
* during use anyway).
*
* So you can run process() in its own thread if you like, but if you
* want to change ratios dynamically from a different thread, you will
* need some form of mutex in your code. Changing the time or pitch
* ratio is real-time safe except in extreme circumstances, so for
* most applications that may change these dynamically it probably
* makes most sense to do so from the same thread as calls process(),
* even if that is a real-time thread.
*/
namespace RubberBand
{
class RubberBandStretcher : public TimeStretcher
class RubberBandStretcher
{
public:
/**
* Processing options for the timestretcher. The preferred
* options should normally be set in the constructor, as a bitwise
@ -102,21 +128,15 @@ public:
* during non-transient segments. These options may be changed at
* any time.
*
* \li \c OptionPhaseAdaptive - Lock the adjustments of phase
* for frequencies close to peak frequencies to those of the
* peak, but reduce the degree of locking as the stretch ratio
* gets longer. This, the default setting, should give a good
* balance between clarity and smoothness in most situations.
* \li \c OptionPhaseLaminar - Adjust phases when stretching in
* such a way as to try to retain the continuity of phase
* relationships between adjacent frequency bins whose phases
* are behaving in similar ways. This, the default setting,
* should give good results in most situations.
*
* \li \c OptionPhasePeakLocked - Lock the adjustments of phase
* for frequencies close to peak frequencies to those of the
* peak. This should give a clear result in situations with
* relatively low stretch ratios, but a relatively metallic
* sound at longer stretches.
*
* \li \c OptionPhaseIndependent - Do not lock phase adjustments
* to peak frequencies. This usually results in a softer,
* phasier sound.
* \li \c OptionPhaseIndependent - Adjust the phase in each
* frequency bin independently from its neighbours. This
* usually results in a slightly softer, phasier sound.
*
* 5. Flags prefixed \c OptionThreading control the threading
* model of the stretcher. These options may not be changed after
@ -151,34 +171,79 @@ public:
* \li \c OptionWindowLong - Use a longer window. This is
* likely to result in a smoother sound at the expense of
* clarity and timing.
*
* 7. Flags prefixed \c OptionFormant control the handling of
* formant shape (spectral envelope) when pitch-shifting. These
* options may be changed at any time.
*
* \li \c OptionFormantShifted - Apply no special formant
* processing. The spectral envelope will be pitch shifted as
* normal.
*
* \li \c OptionFormantPreserved - Preserve the spectral
* envelope of the unshifted signal. This permits shifting the
* note frequency without so substantially affecting the
* perceived pitch profile of the voice or instrument.
*
* 8. Flags prefixed \c OptionPitch control the method used for
* pitch shifting. These options may be changed at any time.
* They are only effective in realtime mode; in offline mode, the
* pitch-shift method is fixed.
*
* \li \c OptionPitchHighSpeed - Use a method with a CPU cost
* that is relatively moderate and predictable. This may
* sound less clear than OptionPitchHighQuality, especially
* for large pitch shifts.
* \li \c OptionPitchHighQuality - Use the highest quality
* method for pitch shifting. This method has a CPU cost
* approximately proportional to the required frequency shift.
* \li \c OptionPitchHighConsistency - Use the method that gives
* greatest consistency when used to create small variations in
* pitch around the 1.0-ratio level. Unlike the previous two
* options, this avoids discontinuities when moving across the
* 1.0 pitch scale in real-time; it also consumes more CPU than
* the others in the case where the pitch scale is exactly 1.0.
*/
enum Option {
OptionProcessOffline = 0x00000000,
OptionProcessRealTime = 0x00000001,
OptionStretchElastic = 0x00000000,
OptionStretchPrecise = 0x00000010,
OptionTransientsCrisp = 0x00000000,
OptionTransientsMixed = 0x00000100,
OptionTransientsSmooth = 0x00000200,
OptionPhaseLaminar = 0x00000000,
OptionPhaseIndependent = 0x00002000,
OptionThreadingAuto = 0x00000000,
OptionThreadingNever = 0x00010000,
OptionThreadingAlways = 0x00020000,
OptionWindowStandard = 0x00000000,
OptionWindowShort = 0x00100000,
OptionWindowLong = 0x00200000,
OptionFormantShifted = 0x00000000,
OptionFormantPreserved = 0x01000000,
OptionPitchHighSpeed = 0x00000000,
OptionPitchHighQuality = 0x02000000,
OptionPitchHighConsistency = 0x04000000
};
typedef int Options;
static const int OptionProcessOffline = 0x00000000;
static const int OptionProcessRealTime = 0x00000001;
static const int OptionStretchElastic = 0x00000000;
static const int OptionStretchPrecise = 0x00000010;
static const int OptionTransientsCrisp = 0x00000000;
static const int OptionTransientsMixed = 0x00000100;
static const int OptionTransientsSmooth = 0x00000200;
static const int OptionPhaseAdaptive = 0x00000000;
static const int OptionPhasePeakLocked = 0x00001000;
static const int OptionPhaseIndependent = 0x00002000;
static const int OptionThreadingAuto = 0x00000000;
static const int OptionThreadingNever = 0x00010000;
static const int OptionThreadingAlways = 0x00020000;
static const int OptionWindowStandard = 0x00000000;
static const int OptionWindowShort = 0x00100000;
static const int OptionWindowLong = 0x00200000;
static const int DefaultOptions = 0x00000000;
static const int PercussiveOptions = OptionWindowShort | \
OptionPhaseIndependent;
enum PresetOption {
DefaultOptions = 0x00000000,
PercussiveOptions = 0x00102000
};
/**
* Construct a time and pitch stretcher object to run at the given
@ -193,14 +258,14 @@ public:
Options options = DefaultOptions,
double initialTimeRatio = 1.0,
double initialPitchScale = 1.0);
virtual ~RubberBandStretcher();
~RubberBandStretcher();
/**
* Reset the stretcher's internal buffers. The stretcher should
* subsequently behave as if it had just been constructed
* (although retaining the current time and pitch ratio).
*/
virtual void reset();
void reset();
/**
* Set the time ratio for the stretcher. This is the ratio of
@ -223,7 +288,7 @@ public:
* mechanism to ensure that setTimeRatio and process() cannot be
* run at once (there is no internal mutex for this purpose).
*/
virtual void setTimeRatio(double ratio);
void setTimeRatio(double ratio);
/**
* Set the pitch scaling ratio for the stretcher. This is the
@ -250,19 +315,19 @@ public:
* mechanism to ensure that setPitchScale and process() cannot be
* run at once (there is no internal mutex for this purpose).
*/
virtual void setPitchScale(double scale);
void setPitchScale(double scale);
/**
* Return the last time ratio value that was set (either on
* construction or with setTimeRatio()).
*/
virtual double getTimeRatio() const;
double getTimeRatio() const;
/**
* Return the last pitch scaling ratio value that was set (either
* on construction or with setPitchScale()).
*/
virtual double getPitchScale() const;
double getPitchScale() const;
/**
* Return the processing latency of the stretcher. This is the
@ -273,7 +338,7 @@ public:
* In RealTime mode, the latency may depend on the time and pitch
* ratio and other options.
*/
virtual size_t getLatency() const;
size_t getLatency() const;
/**
* Change an OptionTransients configuration setting. This may be
@ -281,7 +346,7 @@ public:
* Offline mode (for which the transients option is fixed on
* construction).
*/
virtual void setTransientsOption(Options options);
void setTransientsOption(Options options);
/**
* Change an OptionPhase configuration setting. This may be
@ -291,7 +356,25 @@ public:
* may not take effect immediately if processing is already under
* way when this function is called.
*/
virtual void setPhaseOption(Options options);
void setPhaseOption(Options options);
/**
* Change an OptionFormant configuration setting. This may be
* called at any time in any mode.
*
* Note that if running multi-threaded in Offline mode, the change
* may not take effect immediately if processing is already under
* way when this function is called.
*/
void setFormantOption(Options options);
/**
* Change an OptionPitch configuration setting. This may be
* called at any time in RealTime mode. It may not be called in
* Offline mode (for which the transients option is fixed on
* construction).
*/
void setPitchOption(Options options);
/**
* Tell the stretcher exactly how many input samples it will
@ -300,7 +383,7 @@ public:
* exactly correct. In RealTime mode no such guarantee is
* possible and this value is ignored.
*/
virtual void setExpectedInputDuration(size_t samples);
void setExpectedInputDuration(size_t samples);
/**
* Ask the stretcher how many audio sample frames should be
@ -314,7 +397,7 @@ public:
* study() (to which you may pass any number of samples at a time,
* and from which there is no output).
*/
virtual size_t getSamplesRequired() const;
size_t getSamplesRequired() const;
/**
* Tell the stretcher the maximum number of sample frames that you
@ -331,7 +414,7 @@ public:
* study() (to which you may pass any number of samples at a time,
* and from which there is no output).
*/
virtual void setMaxProcessSize(size_t samples);
void setMaxProcessSize(size_t samples);
/**
* Provide a block of "samples" sample frames for the stretcher to
@ -350,7 +433,7 @@ public:
* Set "final" to true if this is the last block of data that will
* be provided to study() before the first process() call.
*/
virtual void study(const float *const *input, size_t samples, bool final);
void study(const float *const *input, size_t samples, bool final);
/**
* Provide a block of "samples" sample frames for processing.
@ -358,7 +441,7 @@ public:
*
* Set "final" to true if this is the last block of input data.
*/
virtual void process(const float *const *input, size_t samples, bool final);
void process(const float *const *input, size_t samples, bool final);
/**
* Ask the stretcher how many audio sample frames of output data
@ -373,7 +456,7 @@ public:
* This function returns -1 if all data has been fully processed
* and all output read, and the stretch process is now finished.
*/
virtual int available() const;
int available() const;
/**
* Obtain some processed output data from the stretcher. Up to
@ -382,22 +465,91 @@ public:
* The return value is the actual number of sample frames
* retrieved.
*/
virtual size_t retrieve(float *const *output, size_t samples) const;
size_t retrieve(float *const *output, size_t samples) const;
virtual float getFrequencyCutoff(int n) const;
virtual void setFrequencyCutoff(int n, float f);
/**
* Return the value of internal frequency cutoff value n.
*
* This function is not for general use.
*/
float getFrequencyCutoff(int n) const;
/**
* Set the value of internal frequency cutoff n to f Hz.
*
* This function is not for general use.
*/
void setFrequencyCutoff(int n, float f);
virtual size_t getInputIncrement() const;
virtual std::vector<int> getOutputIncrements() const; //!!! document particular meaning in RT mode
virtual std::vector<float> getPhaseResetCurve() const; //!!! document particular meaning in RT mode
virtual std::vector<int> getExactTimePoints() const; //!!! meaningless in RT mode
/**
* Retrieve the value of the internal input block increment value.
*
* This function is provided for diagnostic purposes only.
*/
size_t getInputIncrement() const;
virtual size_t getChannelCount() const;
virtual void calculateStretch();
/**
* In offline mode, retrieve the sequence of internal block
* increments for output, for the entire audio data, provided the
* stretch profile has been calculated. In realtime mode,
* retrieve any output increments that have accumulated since the
* last call to getOutputIncrements, to a limit of 16.
*
* This function is provided for diagnostic purposes only.
*/
std::vector<int> getOutputIncrements() const;
virtual void setDebugLevel(int level);
/**
* In offline mode, retrieve the sequence of internal phase reset
* detection function values, for the entire audio data, provided
* the stretch profile has been calculated. In realtime mode,
* retrieve any phase reset points that have accumulated since the
* last call to getPhaseResetCurve, to a limit of 16.
*
* This function is provided for diagnostic purposes only.
*/
std::vector<float> getPhaseResetCurve() const;
/**
* In offline mode, retrieve the sequence of internal frames for
* which exact timing has been sought, for the entire audio data,
* provided the stretch profile has been calculated. In realtime
* mode, return an empty sequence.
*
* This function is provided for diagnostic purposes only.
*/
std::vector<int> getExactTimePoints() const;
/**
* Return the number of channels this stretcher was constructed
* with.
*/
size_t getChannelCount() const;
/**
* Force the stretcher to calculate a stretch profile. Normally
* this happens automatically for the first process() call in
* offline mode.
*
* This function is provided for diagnostic purposes only.
*/
void calculateStretch();
/**
* Set the level of debug output. The value may be from 0 (errors
* only) to 3 (very verbose, with audible ticks in the output at
* phase reset points). The default is whatever has been set
* using setDefaultDebugLevel, or 0 if that function has not been
* called.
*/
void setDebugLevel(int level);
/**
* Set the default level of debug output for subsequently
* constructed stretchers.
*
* @see setDebugLevel
*/
static void setDefaultDebugLevel(int level);
protected:

View file

@ -0,0 +1,121 @@
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#ifndef _RUBBERBAND_C_API_H_
#define _RUBBERBAND_C_API_H_
#ifdef __cplusplus
extern "C" {
#endif
#define RUBBERBAND_VERSION "1.2.0-gpl"
#define RUBBERBAND_API_MAJOR_VERSION 2
#define RUBBERBAND_API_MINOR_VERSION 0
/**
* This is a C-linkage interface to the Rubber Band time stretcher.
*
* This is a wrapper interface: the primary interface is in C++ and is
* defined and documented in RubberBandStretcher.h. The library
* itself is implemented in C++, and requires C++ standard library
* support even when using the C-linkage API.
*
* Please see RubberBandStretcher.h for documentation.
*
* If you are writing to the C++ API, do not include this header.
*/
enum RubberBandOption {
RubberBandOptionProcessOffline = 0x00000000,
RubberBandOptionProcessRealTime = 0x00000001,
RubberBandOptionStretchElastic = 0x00000000,
RubberBandOptionStretchPrecise = 0x00000010,
RubberBandOptionTransientsCrisp = 0x00000000,
RubberBandOptionTransientsMixed = 0x00000100,
RubberBandOptionTransientsSmooth = 0x00000200,
RubberBandOptionPhaseLaminar = 0x00000000,
RubberBandOptionPhaseIndependent = 0x00002000,
RubberBandOptionThreadingAuto = 0x00000000,
RubberBandOptionThreadingNever = 0x00010000,
RubberBandOptionThreadingAlways = 0x00020000,
RubberBandOptionWindowStandard = 0x00000000,
RubberBandOptionWindowShort = 0x00100000,
RubberBandOptionWindowLong = 0x00200000,
RubberBandOptionFormantShifted = 0x00000000,
RubberBandOptionFormantPreserved = 0x01000000,
RubberBandOptionPitchHighQuality = 0x00000000,
RubberBandOptionPitchHighSpeed = 0x02000000,
RubberBandOptionPitchHighConsistency = 0x04000000
};
typedef int RubberBandOptions;
struct RubberBandState_;
typedef struct RubberBandState_ *RubberBandState;
extern RubberBandState rubberband_new(unsigned int sampleRate,
unsigned int channels,
RubberBandOptions options,
double initialTimeRatio,
double initialPitchScale);
extern void rubberband_delete(RubberBandState);
extern void rubberband_reset(RubberBandState);
extern void rubberband_set_time_ratio(RubberBandState, double ratio);
extern void rubberband_set_pitch_scale(RubberBandState, double scale);
extern double rubberband_get_time_ratio(const RubberBandState);
extern double rubberband_get_pitch_scale(const RubberBandState);
extern unsigned int rubberband_get_latency(const RubberBandState);
extern void rubberband_set_transients_option(RubberBandState, RubberBandOptions options);
extern void rubberband_set_phase_option(RubberBandState, RubberBandOptions options);
extern void rubberband_set_formant_option(RubberBandState, RubberBandOptions options);
extern void rubberband_set_pitch_option(RubberBandState, RubberBandOptions options);
extern void rubberband_set_expected_input_duration(RubberBandState, unsigned int samples);
extern unsigned int rubberband_get_samples_required(const RubberBandState);
extern void rubberband_set_max_process_size(RubberBandState, unsigned int samples);
extern void rubberband_study(RubberBandState, const float *const *input, unsigned int samples, int final);
extern void rubberband_process(RubberBandState, const float *const *input, unsigned int samples, int final);
extern int rubberband_available(const RubberBandState);
extern unsigned int rubberband_retrieve(const RubberBandState, float *const *output, unsigned int samples);
extern unsigned int rubberband_get_channel_count(const RubberBandState);
extern void rubberband_calculate_stretch(RubberBandState);
extern void rubberband_set_debug_level(RubberBandState, int level);
extern void rubberband_set_default_debug_level(int level);
#ifdef __cplusplus
}
#endif
#endif

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -14,6 +14,9 @@
#include "AudioCurve.h"
#include <iostream>
using namespace std;
namespace RubberBand
{
@ -27,5 +30,15 @@ AudioCurve::~AudioCurve()
{
}
float
AudioCurve::process(const double *R__ mag, size_t increment)
{
cerr << "WARNING: Using inefficient AudioCurve::process(double)" << endl;
float *tmp = new float[m_windowSize];
for (int i = 0; i < int(m_windowSize); ++i) tmp[i] = float(mag[i]);
float df = process(tmp, increment);
delete[] tmp;
return df;
}
}

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -17,6 +17,8 @@
#include <sys/types.h>
#include "sysutils.h"
namespace RubberBand
{
@ -28,7 +30,8 @@ public:
virtual void setWindowSize(size_t newSize) = 0;
virtual float process(float *mag, size_t increment) = 0;
virtual float process(const float *R__ mag, size_t increment) = 0;
virtual float process(const double *R__ mag, size_t increment);
virtual void reset() = 0;
protected:

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -38,7 +38,7 @@ ConstantAudioCurve::setWindowSize(size_t newSize)
}
float
ConstantAudioCurve::process(float *, size_t)
ConstantAudioCurve::process(const float *R__, size_t)
{
return 1.f;
}

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -28,7 +28,7 @@ public:
virtual void setWindowSize(size_t newSize);
virtual float process(float *mag, size_t increment);
virtual float process(const float *R__ mag, size_t increment);
virtual void reset();
};

File diff suppressed because it is too large Load diff

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -15,6 +15,8 @@
#ifndef _RUBBERBAND_FFT_H_
#define _RUBBERBAND_FFT_H_
#include "sysutils.h"
namespace RubberBand {
class FFTImpl;
@ -36,22 +38,24 @@ class FFT
public:
enum Exception { InvalidSize };
FFT(unsigned int size); // may throw InvalidSize
FFT(int size, int debugLevel = 0); // may throw InvalidSize
~FFT();
void forward(double *realIn, double *realOut, double *imagOut);
void forwardPolar(double *realIn, double *magOut, double *phaseOut);
void forwardMagnitude(double *realIn, double *magOut);
void forward(const double *R__ realIn, double *R__ realOut, double *R__ imagOut);
void forwardPolar(const double *R__ realIn, double *R__ magOut, double *R__ phaseOut);
void forwardMagnitude(const double *R__ realIn, double *R__ magOut);
void forward(float *realIn, float *realOut, float *imagOut);
void forwardPolar(float *realIn, float *magOut, float *phaseOut);
void forwardMagnitude(float *realIn, float *magOut);
void forward(const float *R__ realIn, float *R__ realOut, float *R__ imagOut);
void forwardPolar(const float *R__ realIn, float *R__ magOut, float *R__ phaseOut);
void forwardMagnitude(const float *R__ realIn, float *R__ magOut);
void inverse(double *realIn, double *imagIn, double *realOut);
void inversePolar(double *magIn, double *phaseIn, double *realOut);
void inverse(const double *R__ realIn, const double *R__ imagIn, double *R__ realOut);
void inversePolar(const double *R__ magIn, const double *R__ phaseIn, double *R__ realOut);
void inverseCepstral(const double *R__ magIn, double *R__ cepOut);
void inverse(float *realIn, float *imagIn, float *realOut);
void inversePolar(float *magIn, float *phaseIn, float *realOut);
void inverse(const float *R__ realIn, const float *R__ imagIn, float *R__ realOut);
void inversePolar(const float *R__ magIn, const float *R__ phaseIn, float *R__ realOut);
void inverseCepstral(const float *R__ magIn, float *R__ cepOut);
// Calling one or both of these is optional -- if neither is
// called, the first call to a forward or inverse method will call

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -38,12 +38,14 @@ HighFrequencyAudioCurve::setWindowSize(size_t newSize)
}
float
HighFrequencyAudioCurve::process(float *mag, size_t increment)
HighFrequencyAudioCurve::process(const float *R__ mag, size_t increment)
{
float result = 0.0;
for (size_t n = 0; n <= m_windowSize / 2; ++n) {
result += mag[n] * n;
const int sz = m_windowSize / 2;
for (int n = 0; n <= sz; ++n) {
result = result + mag[n] * n;
}
return result;

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -30,7 +30,7 @@ public:
virtual void setWindowSize(size_t newSize);
virtual float process(float *mag, size_t increment);
virtual float process(const float *R__ mag, size_t increment);
virtual void reset();
};

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -14,15 +14,18 @@
#include "PercussiveAudioCurve.h"
#include "Profiler.h"
#include <cmath>
namespace RubberBand
{
PercussiveAudioCurve::PercussiveAudioCurve(size_t sampleRate, size_t windowSize) :
AudioCurve(sampleRate, windowSize)
{
m_prevMag = new double[m_windowSize/2 + 1];
m_prevMag = new float[m_windowSize/2 + 1];
for (size_t i = 0; i <= m_windowSize/2; ++i) {
m_prevMag[i] = 0.f;
@ -45,29 +48,60 @@ PercussiveAudioCurve::reset()
void
PercussiveAudioCurve::setWindowSize(size_t newSize)
{
delete[] m_prevMag;
m_windowSize = newSize;
m_prevMag = new double[m_windowSize/2 + 1];
delete[] m_prevMag;
m_prevMag = new float[m_windowSize/2 + 1];
reset();
}
float
PercussiveAudioCurve::process(float *mag, size_t increment)
PercussiveAudioCurve::process(const float *R__ mag, size_t increment)
{
static float threshold = pow(10, 0.3);
static float zeroThresh = pow(10, -16);
static float threshold = powf(10.f, 0.15f); // 3dB rise in square of magnitude
static float zeroThresh = powf(10.f, -8);
size_t count = 0;
size_t nonZeroCount = 0;
for (size_t n = 1; n <= m_windowSize / 2; ++n) {
float sqrmag = mag[n] * mag[n];
bool above = ((sqrmag / m_prevMag[n]) >= threshold);
const int sz = m_windowSize / 2;
for (int n = 1; n <= sz; ++n) {
bool above = ((mag[n] / m_prevMag[n]) >= threshold);
if (above) ++count;
if (sqrmag > zeroThresh) ++nonZeroCount;
m_prevMag[n] = sqrmag;
if (mag[n] > zeroThresh) ++nonZeroCount;
}
for (int n = 1; n <= sz; ++n) {
m_prevMag[n] = mag[n];
}
if (nonZeroCount == 0) return 0;
else return float(count) / float(nonZeroCount);
}
float
PercussiveAudioCurve::process(const double *R__ mag, size_t increment)
{
Profiler profiler("PercussiveAudioCurve::process");
static double threshold = pow(10.0, 0.15); // 3dB rise in square of magnitude
static double zeroThresh = pow(10.0, -8);
size_t count = 0;
size_t nonZeroCount = 0;
const int sz = m_windowSize / 2;
for (int n = 1; n <= sz; ++n) {
bool above = ((mag[n] / m_prevMag[n]) >= threshold);
if (above) ++count;
if (mag[n] > zeroThresh) ++nonZeroCount;
}
for (int n = 1; n <= sz; ++n) {
m_prevMag[n] = mag[n];
}
if (nonZeroCount == 0) return 0;

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -29,11 +29,12 @@ public:
virtual void setWindowSize(size_t newSize);
virtual float process(float *mag, size_t increment);
virtual float process(const float *R__ mag, size_t increment);
virtual float process(const double *R__ mag, size_t increment);
virtual void reset();
protected:
double *m_prevMag;
float *R__ m_prevMag;
};
}

View file

@ -0,0 +1,176 @@
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "Profiler.h"
#include <algorithm>
#include <set>
#include <string>
#include <map>
#include <cstdio>
namespace RubberBand {
#ifndef NO_TIMING
Profiler::ProfileMap
Profiler::m_profiles;
Profiler::WorstCallMap
Profiler::m_worstCalls;
void
Profiler::add(const char *id, float ms)
{
ProfileMap::iterator pmi = m_profiles.find(id);
if (pmi != m_profiles.end()) {
++pmi->second.first;
pmi->second.second += ms;
} else {
m_profiles[id] = TimePair(1, ms);
}
WorstCallMap::iterator wci = m_worstCalls.find(id);
if (wci != m_worstCalls.end()) {
if (ms > wci->second) wci->second = ms;
} else {
m_worstCalls[id] = ms;
}
}
void
Profiler::dump()
{
#ifdef PROFILE_CLOCKS
fprintf(stderr, "Profiling points [CPU time]:\n");
#else
fprintf(stderr, "Profiling points [Wall time]:\n");
#endif
fprintf(stderr, "\nBy name:\n");
typedef std::set<const char *, std::less<std::string> > StringSet;
StringSet profileNames;
for (ProfileMap::const_iterator i = m_profiles.begin();
i != m_profiles.end(); ++i) {
profileNames.insert(i->first);
}
for (StringSet::const_iterator i = profileNames.begin();
i != profileNames.end(); ++i) {
ProfileMap::const_iterator j = m_profiles.find(*i);
if (j == m_profiles.end()) continue;
const TimePair &pp(j->second);
fprintf(stderr, "%s(%d):\n", *i, pp.first);
fprintf(stderr, "\tReal: \t%f ms \t[%f ms total]\n",
(pp.second / pp.first),
(pp.second));
WorstCallMap::const_iterator k = m_worstCalls.find(*i);
if (k == m_worstCalls.end()) continue;
fprintf(stderr, "\tWorst:\t%f ms/call\n", k->second);
}
typedef std::multimap<float, const char *> TimeRMap;
typedef std::multimap<int, const char *> IntRMap;
TimeRMap totmap, avgmap, worstmap;
IntRMap ncallmap;
for (ProfileMap::const_iterator i = m_profiles.begin();
i != m_profiles.end(); ++i) {
totmap.insert(TimeRMap::value_type(i->second.second, i->first));
avgmap.insert(TimeRMap::value_type(i->second.second /
i->second.first, i->first));
ncallmap.insert(IntRMap::value_type(i->second.first, i->first));
}
for (WorstCallMap::const_iterator i = m_worstCalls.begin();
i != m_worstCalls.end(); ++i) {
worstmap.insert(TimeRMap::value_type(i->second, i->first));
}
fprintf(stderr, "\nBy total:\n");
for (TimeRMap::const_iterator i = totmap.end(); i != totmap.begin(); ) {
--i;
fprintf(stderr, "%-40s %f ms\n", i->second, i->first);
}
fprintf(stderr, "\nBy average:\n");
for (TimeRMap::const_iterator i = avgmap.end(); i != avgmap.begin(); ) {
--i;
fprintf(stderr, "%-40s %f ms\n", i->second, i->first);
}
fprintf(stderr, "\nBy worst case:\n");
for (TimeRMap::const_iterator i = worstmap.end(); i != worstmap.begin(); ) {
--i;
fprintf(stderr, "%-40s %f ms\n", i->second, i->first);
}
fprintf(stderr, "\nBy number of calls:\n");
for (IntRMap::const_iterator i = ncallmap.end(); i != ncallmap.begin(); ) {
--i;
fprintf(stderr, "%-40s %d\n", i->second, i->first);
}
}
Profiler::Profiler(const char* c) :
m_c(c),
m_ended(false)
{
#ifdef PROFILE_CLOCKS
m_start = clock();
#else
(void)gettimeofday(&m_start, 0);
#endif
}
Profiler::~Profiler()
{
if (!m_ended) end();
}
void
Profiler::end()
{
#ifdef PROFILE_CLOCKS
clock_t end = clock();
clock_t elapsed = end - m_start;
float ms = float((double(elapsed) / double(CLOCKS_PER_SEC)) * 1000.0);
#else
struct timeval tv;
(void)gettimeofday(&tv, 0);
tv.tv_sec -= m_start.tv_sec;
if (tv.tv_usec < m_start.tv_usec) {
tv.tv_usec += 1000000;
tv.tv_sec -= 1;
}
tv.tv_usec -= m_start.tv_usec;
float ms = float((double(tv.tv_sec) + (double(tv.tv_usec) / 1000000.0)) * 1000.0);
#endif
add(m_c, ms);
m_ended = true;
}
#endif
}

View file

@ -0,0 +1,91 @@
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#ifndef _PROFILER_H_
#define _PROFILER_H_
#define NO_TIMING 1
//#define WANT_TIMING 1
//#define PROFILE_CLOCKS 1
#ifdef NDEBUG
#ifndef WANT_TIMING
#define NO_TIMING 1
#endif
#endif
#ifndef NO_TIMING
#ifdef PROFILE_CLOCKS
#include <time.h>
#else
#include "sysutils.h"
#ifndef _WIN32
#include <sys/time.h>
#endif
#endif
#endif
#include <map>
namespace RubberBand {
#ifndef NO_TIMING
class Profiler
{
public:
Profiler(const char *name);
~Profiler();
void end(); // same action as dtor
static void dump();
protected:
const char* m_c;
#ifdef PROFILE_CLOCKS
clock_t m_start;
#else
struct timeval m_start;
#endif
bool m_showOnDestruct;
bool m_ended;
typedef std::pair<int, float> TimePair;
typedef std::map<const char *, TimePair> ProfileMap;
typedef std::map<const char *, float> WorstCallMap;
static ProfileMap m_profiles;
static WorstCallMap m_worstCalls;
static void add(const char *, float);
};
#else
class Profiler
{
public:
Profiler(const char *) { }
~Profiler() { }
void update() const { }
void end() { }
static void dump() { }
};
#endif
}
#endif

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -14,6 +14,8 @@
#include "Resampler.h"
#include "Profiler.h"
#include <cstdlib>
#include <cmath>
@ -22,16 +24,40 @@
#include <samplerate.h>
namespace RubberBand {
class Resampler::D
class ResamplerImpl
{
public:
D(Quality quality, size_t channels, size_t maxBufferSize);
~D();
virtual ~ResamplerImpl() { }
virtual int resample(const float *const R__ *const R__ in,
float *const R__ *const R__ out,
int incount,
float ratio,
bool final) = 0;
size_t resample(float **in, float **out,
size_t incount, float ratio, bool final);
virtual void reset() = 0;
};
namespace Resamplers {
class D_SRC : public ResamplerImpl
{
public:
D_SRC(Resampler::Quality quality, int channels, int maxBufferSize,
int m_debugLevel);
~D_SRC();
int resample(const float *const R__ *const R__ in,
float *const R__ *const R__ out,
int incount,
float ratio,
bool final);
void reset();
@ -39,40 +65,52 @@ protected:
SRC_STATE *m_src;
float *m_iin;
float *m_iout;
size_t m_channels;
size_t m_iinsize;
size_t m_ioutsize;
float m_lastRatio;
int m_channels;
int m_iinsize;
int m_ioutsize;
int m_debugLevel;
};
Resampler::D::D(Quality quality, size_t channels, size_t maxBufferSize) :
D_SRC::D_SRC(Resampler::Quality quality, int channels, int maxBufferSize,
int debugLevel) :
m_src(0),
m_iin(0),
m_iout(0),
m_lastRatio(1.f),
m_channels(channels),
m_iinsize(0),
m_ioutsize(0)
m_ioutsize(0),
m_debugLevel(debugLevel)
{
// std::cerr << "Resampler::Resampler: using libsamplerate implementation"
// << std::endl;
if (m_debugLevel > 0) {
std::cerr << "Resampler::Resampler: using libsamplerate implementation"
<< std::endl;
}
int err = 0;
m_src = src_new(quality == Best ? SRC_SINC_BEST_QUALITY :
quality == Fastest ? SRC_LINEAR :
m_src = src_new(quality == Resampler::Best ? SRC_SINC_BEST_QUALITY :
quality == Resampler::Fastest ? SRC_LINEAR :
SRC_SINC_FASTEST,
channels, &err);
//!!! check err, throw
if (err) {
std::cerr << "Resampler::Resampler: failed to create libsamplerate resampler: "
<< src_strerror(err) << std::endl;
throw Resampler::ImplementationError; //!!! of course, need to catch this!
}
if (maxBufferSize > 0 && m_channels > 1) {
//!!! alignment?
m_iinsize = maxBufferSize * m_channels;
m_ioutsize = maxBufferSize * m_channels * 2;
m_iin = (float *)malloc(m_iinsize * sizeof(float));
m_iout = (float *)malloc(m_ioutsize * sizeof(float));
m_iin = allocFloat(m_iinsize);
m_iout = allocFloat(m_ioutsize);
}
reset();
}
Resampler::D::~D()
D_SRC::~D_SRC()
{
src_delete(m_src);
if (m_iinsize > 0) {
@ -83,28 +121,29 @@ Resampler::D::~D()
}
}
size_t
Resampler::D::resample(float **in, float **out, size_t incount, float ratio,
bool final)
int
D_SRC::resample(const float *const R__ *const R__ in,
float *const R__ *const R__ out,
int incount,
float ratio,
bool final)
{
SRC_DATA data;
size_t outcount = lrintf(ceilf(incount * ratio));
int outcount = lrintf(ceilf(incount * ratio));
if (m_channels == 1) {
data.data_in = *in;
data.data_in = const_cast<float *>(*in); //!!!???
data.data_out = *out;
} else {
if (incount * m_channels > m_iinsize) {
m_iinsize = incount * m_channels;
m_iin = (float *)realloc(m_iin, m_iinsize * sizeof(float));
m_iin = allocFloat(m_iin, m_iinsize);
}
if (outcount * m_channels > m_ioutsize) {
m_ioutsize = outcount * m_channels;
m_iout = (float *)realloc(m_iout, m_ioutsize * sizeof(float));
m_iout = allocFloat(m_iout, m_ioutsize);
}
for (size_t i = 0; i < incount; ++i) {
for (size_t c = 0; c < m_channels; ++c) {
for (int i = 0; i < incount; ++i) {
for (int c = 0; c < m_channels; ++c) {
m_iin[i * m_channels + c] = in[c][i];
}
}
@ -120,51 +159,101 @@ Resampler::D::resample(float **in, float **out, size_t incount, float ratio,
int err = 0;
err = src_process(m_src, &data);
//!!! check err, respond appropriately
if (err) {
std::cerr << "Resampler::process: libsamplerate error: "
<< src_strerror(err) << std::endl;
throw Resampler::ImplementationError; //!!! of course, need to catch this!
}
if (m_channels > 1) {
for (int i = 0; i < data.output_frames_gen; ++i) {
for (size_t c = 0; c < m_channels; ++c) {
for (int c = 0; c < m_channels; ++c) {
out[c][i] = m_iout[i * m_channels + c];
}
}
}
m_lastRatio = ratio;
return data.output_frames_gen;
}
void
Resampler::D::reset()
D_SRC::reset()
{
src_reset(m_src);
}
} // end namespace
namespace RubberBand {
} /* end namespace Resamplers */
Resampler::Resampler(Quality quality, size_t channels, size_t maxBufferSize)
Resampler::Resampler(Resampler::Quality quality, int channels,
int maxBufferSize, int debugLevel)
{
m_d = new D(quality, channels, maxBufferSize);
m_method = -1;
switch (quality) {
case Resampler::Best:
m_method = 1;
break;
case Resampler::FastestTolerable:
m_method = 1;
break;
case Resampler::Fastest:
m_method = 1;
break;
}
if (m_method == -1) {
std::cerr << "Resampler::Resampler(" << quality << ", " << channels
<< ", " << maxBufferSize << "): No implementation available!"
<< std::endl;
abort();
}
switch (m_method) {
case 0:
std::cerr << "Resampler::Resampler(" << quality << ", " << channels
<< ", " << maxBufferSize << "): No implementation available!"
<< std::endl;
abort();
break;
case 1:
d = new Resamplers::D_SRC(quality, channels, maxBufferSize, debugLevel);
break;
case 2:
std::cerr << "Resampler::Resampler(" << quality << ", " << channels
<< ", " << maxBufferSize << "): No implementation available!"
<< std::endl;
abort();
break;
}
}
Resampler::~Resampler()
{
delete m_d;
delete d;
}
size_t
Resampler::resample(float **in, float **out,
size_t incount, float ratio, bool final)
int
Resampler::resample(const float *const R__ *const R__ in,
float *const R__ *const R__ out,
int incount, float ratio, bool final)
{
return m_d->resample(in, out, incount, ratio, final);
Profiler profiler("Resampler::resample");
return d->resample(in, out, incount, ratio, final);
}
void
Resampler::reset()
{
m_d->reset();
d->reset();
}
}

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -17,12 +17,17 @@
#include <sys/types.h>
#include "sysutils.h"
namespace RubberBand {
class ResamplerImpl;
class Resampler
{
public:
enum Quality { Best, FastestTolerable, Fastest };
enum Exception { ImplementationError };
/**
* Construct a resampler with the given quality level and channel
@ -30,17 +35,21 @@ public:
* that may be passed to the resample function before the
* resampler needs to reallocate its internal buffers.
*/
Resampler(Quality quality, size_t channels, size_t maxBufferSize = 0);
Resampler(Quality quality, int channels, int maxBufferSize = 0,
int debugLevel = 0);
~Resampler();
size_t resample(float **in, float **out,
size_t incount, float ratio, bool final = false);
int resample(const float *const R__ *const R__ in,
float *const R__ *const R__ out,
int incount,
float ratio,
bool final = false);
void reset();
protected:
class D;
D *m_d;
ResamplerImpl *d;
int m_method;
};
}

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -18,11 +18,15 @@
#include <cstring>
#include <sys/types.h>
#include <cstring>
#ifndef _WIN32
#include <sys/mman.h>
#endif
#include "Scavenger.h"
#include "Profiler.h"
//#define DEBUG_RINGBUFFER 1
@ -58,7 +62,7 @@ public:
* power of two, this means n should ideally be some power of two
* minus one.
*/
RingBuffer(size_t n);
RingBuffer(int n);
virtual ~RingBuffer();
@ -66,7 +70,7 @@ public:
* Return the total capacity of the ring buffer in samples.
* (This is the argument n passed to the constructor.)
*/
size_t getSize() const;
int getSize() const;
/**
* Resize the ring buffer. This also empties it; use resized()
@ -74,7 +78,7 @@ public:
* new, larger buffer; the old buffer is scavenged after a seemly
* delay. Should be called from the write thread.
*/
void resize(size_t newSize);
void resize(int newSize);
/**
* Return a new ring buffer (allocated with "new" -- called must
@ -84,7 +88,7 @@ public:
* or inconsistent. If this buffer's data will not fit in the new
* size, the contents are undefined.
*/
RingBuffer<T, N> *resized(size_t newSize, int R = 0) const;
RingBuffer<T, N> *resized(int newSize, int R = 0) const;
/**
* Lock the ring buffer into physical memory. Returns true
@ -102,19 +106,19 @@ public:
* Return the amount of data available for reading by reader R, in
* samples.
*/
size_t getReadSpace(int R = 0) const;
int getReadSpace(int R = 0) const;
/**
* Return the amount of space available for writing, in samples.
*/
size_t getWriteSpace() const;
int getWriteSpace() const;
/**
* Read n samples from the buffer, for reader R. If fewer than n
* are available, the remainder will be zeroed out. Returns the
* number of samples actually read.
*/
size_t read(T *destination, size_t n, int R = 0);
int read(T *R__ destination, int n, int R = 0);
/**
* Read n samples from the buffer, for reader R, adding them to
@ -122,7 +126,7 @@ public:
* will be left alone. Returns the number of samples actually
* read.
*/
size_t readAdding(T *destination, size_t n, int R = 0);
int readAdding(T *R__ destination, int n, int R = 0);
/**
* Read one sample from the buffer, for reader R. If no sample is
@ -140,7 +144,7 @@ public:
* n are available, the remainder will be zeroed out. Returns the
* number of samples actually read.
*/
size_t peek(T *destination, size_t n, int R = 0) const;
int peek(T *R__ destination, int n, int R = 0) const;
/**
* Read one sample from the buffer, if available, without
@ -156,27 +160,27 @@ public:
* samples). Returns the number of samples actually available for
* discarding.
*/
size_t skip(size_t n, int R = 0);
int skip(int n, int R = 0);
/**
* Write n samples to the buffer. If insufficient space is
* available, not all samples may actually be written. Returns
* the number of samples actually written.
*/
size_t write(const T *source, size_t n);
int write(const T *source, int n);
/**
* Write n zero-value samples to the buffer. If insufficient
* space is available, not all zeros may actually be written.
* Returns the number of zeroes actually written.
*/
size_t zero(size_t n);
int zero(int n);
protected:
T *m_buffer;
volatile size_t m_writer;
volatile size_t m_readers[N];
size_t m_size;
T *R__ m_buffer;
volatile int m_writer;
volatile int m_readers[N];
int m_size;
bool m_mlocked;
static Scavenger<ScavengerArrayWrapper<T> > m_scavenger;
@ -190,7 +194,7 @@ template <typename T, int N>
Scavenger<ScavengerArrayWrapper<T> > RingBuffer<T, N>::m_scavenger;
template <typename T, int N>
RingBuffer<T, N>::RingBuffer(size_t n) :
RingBuffer<T, N>::RingBuffer(int n) :
m_buffer(new T[n + 1]),
m_writer(0),
m_size(n + 1),
@ -221,7 +225,7 @@ RingBuffer<T, N>::~RingBuffer()
}
template <typename T, int N>
size_t
int
RingBuffer<T, N>::getSize() const
{
#ifdef DEBUG_RINGBUFFER
@ -233,7 +237,7 @@ RingBuffer<T, N>::getSize() const
template <typename T, int N>
void
RingBuffer<T, N>::resize(size_t newSize)
RingBuffer<T, N>::resize(int newSize)
{
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::resize(" << newSize << ")" << std::endl;
@ -260,12 +264,12 @@ RingBuffer<T, N>::resize(size_t newSize)
template <typename T, int N>
RingBuffer<T, N> *
RingBuffer<T, N>::resized(size_t newSize, int R) const
RingBuffer<T, N>::resized(int newSize, int R) const
{
RingBuffer<T, N> *newBuffer = new RingBuffer<T, N>(newSize);
size_t w = m_writer;
size_t r = m_readers[R];
int w = m_writer;
int r = m_readers[R];
while (r != w) {
T value = m_buffer[r];
@ -298,12 +302,12 @@ RingBuffer<T, N>::reset()
}
template <typename T, int N>
size_t
int
RingBuffer<T, N>::getReadSpace(int R) const
{
size_t writer = m_writer;
size_t reader = m_readers[R];
size_t space;
int writer = m_writer;
int reader = m_readers[R];
int space;
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::getReadSpace(" << R << "): reader " << reader << ", writer " << writer << std::endl;
@ -321,20 +325,20 @@ RingBuffer<T, N>::getReadSpace(int R) const
}
template <typename T, int N>
size_t
int
RingBuffer<T, N>::getWriteSpace() const
{
size_t space = 0;
int space = 0;
for (int i = 0; i < N; ++i) {
size_t writer = m_writer;
size_t reader = m_readers[i];
size_t here = (reader + m_size - writer - 1);
int writer = m_writer;
int reader = m_readers[i];
int here = (reader + m_size - writer - 1);
if (here >= m_size) here -= m_size;
if (i == 0 || here < space) space = here;
}
#ifdef DEBUG_RINGBUFFER
size_t rs(getReadSpace()), rp(m_readers[0]);
int rs(getReadSpace()), rp(m_readers[0]);
std::cerr << "RingBuffer: write space " << space << ", read space "
<< rs << ", total " << (space + rs) << ", m_size " << m_size << std::endl;
@ -349,39 +353,44 @@ RingBuffer<T, N>::getWriteSpace() const
}
template <typename T, int N>
size_t
RingBuffer<T, N>::read(T *destination, size_t n, int R)
int
RingBuffer<T, N>::read(T *R__ destination, int n, int R)
{
Profiler profiler("RingBuffer::read");
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::read(dest, " << n << ", " << R << ")" << std::endl;
#endif
size_t available = getReadSpace(R);
int available = getReadSpace(R);
if (n > available) {
#ifdef DEBUG_RINGBUFFER
std::cerr << "WARNING: Only " << available << " samples available"
<< std::endl;
#endif
for (size_t i = available; i < n; ++i) {
for (int i = available; i < n; ++i) {
destination[i] = 0;
}
n = available;
}
if (n == 0) return n;
size_t reader = m_readers[R];
size_t here = m_size - reader;
int reader = m_readers[R];
int here = m_size - reader;
T *const R__ bufbase = m_buffer + reader;
if (here >= n) {
for (size_t i = 0; i < n; ++i) {
destination[i] = (m_buffer + reader)[i];
for (int i = 0; i < n; ++i) {
destination[i] = bufbase[i];
}
} else {
for (size_t i = 0; i < here; ++i) {
destination[i] = (m_buffer + reader)[i];
for (int i = 0; i < here; ++i) {
destination[i] = bufbase[i];
}
for (size_t i = 0; i < (n - here); ++i) {
destination[i + here] = m_buffer[i];
T *const R__ destbase = destination + here;
const int nh = n - here;
for (int i = 0; i < nh; ++i) {
destbase[i] = m_buffer[i];
}
}
@ -397,14 +406,16 @@ RingBuffer<T, N>::read(T *destination, size_t n, int R)
}
template <typename T, int N>
size_t
RingBuffer<T, N>::readAdding(T *destination, size_t n, int R)
int
RingBuffer<T, N>::readAdding(T *R__ destination, int n, int R)
{
Profiler profiler("RingBuffer::readAdding");
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::readAdding(dest, " << n << ", " << R << ")" << std::endl;
#endif
size_t available = getReadSpace(R);
int available = getReadSpace(R);
if (n > available) {
#ifdef DEBUG_RINGBUFFER
std::cerr << "WARNING: Only " << available << " samples available"
@ -414,19 +425,22 @@ RingBuffer<T, N>::readAdding(T *destination, size_t n, int R)
}
if (n == 0) return n;
size_t reader = m_readers[R];
size_t here = m_size - reader;
int reader = m_readers[R];
int here = m_size - reader;
const T *const R__ bufbase = m_buffer + reader;
if (here >= n) {
for (size_t i = 0; i < n; ++i) {
destination[i] += (m_buffer + reader)[i];
for (int i = 0; i < n; ++i) {
destination[i] += bufbase[i];
}
} else {
for (size_t i = 0; i < here; ++i) {
destination[i] += (m_buffer + reader)[i];
for (int i = 0; i < here; ++i) {
destination[i] += bufbase[i];
}
for (size_t i = 0; i < (n - here); ++i) {
destination[i + here] += m_buffer[i];
T *const R__ destbase = destination + here;
const int nh = n - here;
for (int i = 0; i < nh; ++i) {
destbase[i] += m_buffer[i];
}
}
@ -451,7 +465,7 @@ RingBuffer<T, N>::readOne(int R)
#endif
return 0;
}
size_t reader = m_readers[R];
int reader = m_readers[R];
T value = m_buffer[reader];
if (++reader == m_size) reader = 0;
m_readers[R] = reader;
@ -459,14 +473,16 @@ RingBuffer<T, N>::readOne(int R)
}
template <typename T, int N>
size_t
RingBuffer<T, N>::peek(T *destination, size_t n, int R) const
int
RingBuffer<T, N>::peek(T *R__ destination, int n, int R) const
{
Profiler profiler("RingBuffer::peek");
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::peek(dest, " << n << ", " << R << ")" << std::endl;
#endif
size_t available = getReadSpace(R);
int available = getReadSpace(R);
if (n > available) {
#ifdef DEBUG_RINGBUFFER
std::cerr << "WARNING: Only " << available << " samples available"
@ -477,19 +493,22 @@ RingBuffer<T, N>::peek(T *destination, size_t n, int R) const
}
if (n == 0) return n;
size_t reader = m_readers[R];
size_t here = m_size - reader;
int reader = m_readers[R];
int here = m_size - reader;
const T *const R__ bufbase = m_buffer + reader;
if (here >= n) {
for (size_t i = 0; i < n; ++i) {
destination[i] = (m_buffer + reader)[i];
for (int i = 0; i < n; ++i) {
destination[i] = bufbase[i];
}
} else {
for (size_t i = 0; i < here; ++i) {
destination[i] = (m_buffer + reader)[i];
for (int i = 0; i < here; ++i) {
destination[i] = bufbase[i];
}
for (size_t i = 0; i < (n - here); ++i) {
destination[i + here] = m_buffer[i];
T *const R__ destbase = destination + here;
const int nh = n - here;
for (int i = 0; i < nh; ++i) {
destbase[i] = m_buffer[i];
}
}
@ -520,14 +539,14 @@ RingBuffer<T, N>::peekOne(int R) const
}
template <typename T, int N>
size_t
RingBuffer<T, N>::skip(size_t n, int R)
int
RingBuffer<T, N>::skip(int n, int R)
{
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::skip(" << n << ", " << R << ")" << std::endl;
#endif
size_t available = getReadSpace(R);
int available = getReadSpace(R);
if (n > available) {
#ifdef DEBUG_RINGBUFFER
std::cerr << "WARNING: Only " << available << " samples available"
@ -537,7 +556,7 @@ RingBuffer<T, N>::skip(size_t n, int R)
}
if (n == 0) return n;
size_t reader = m_readers[R];
int reader = m_readers[R];
reader += n;
while (reader >= m_size) reader -= m_size;
m_readers[R] = reader;
@ -545,14 +564,16 @@ RingBuffer<T, N>::skip(size_t n, int R)
}
template <typename T, int N>
size_t
RingBuffer<T, N>::write(const T *source, size_t n)
int
RingBuffer<T, N>::write(const T *source, int n)
{
Profiler profiler("RingBuffer::write");
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::write(" << n << ")" << std::endl;
#endif
size_t available = getWriteSpace();
int available = getWriteSpace();
if (n > available) {
#ifdef DEBUG_RINGBUFFER
std::cerr << "WARNING: Only room for " << available << " samples"
@ -562,18 +583,23 @@ RingBuffer<T, N>::write(const T *source, size_t n)
}
if (n == 0) return n;
size_t writer = m_writer;
size_t here = m_size - writer;
int writer = m_writer;
int here = m_size - writer;
T *const R__ bufbase = m_buffer + writer;
if (here >= n) {
for (size_t i = 0; i < n; ++i) {
(m_buffer + writer)[i] = source[i];
for (int i = 0; i < n; ++i) {
bufbase[i] = source[i];
}
} else {
for (size_t i = 0; i < here; ++i) {
(m_buffer + writer)[i] = source[i];
for (int i = 0; i < here; ++i) {
bufbase[i] = source[i];
}
for (size_t i = 0; i < (n - here); ++i) {
m_buffer[i] = (source + here)[i];
const int nh = n - here;
const T *const R__ srcbase = source + here;
T *const R__ buf = m_buffer;
for (int i = 0; i < nh; ++i) {
buf[i] = srcbase[i];
}
}
@ -589,14 +615,16 @@ RingBuffer<T, N>::write(const T *source, size_t n)
}
template <typename T, int N>
size_t
RingBuffer<T, N>::zero(size_t n)
int
RingBuffer<T, N>::zero(int n)
{
Profiler profiler("RingBuffer::zero");
#ifdef DEBUG_RINGBUFFER
std::cerr << "RingBuffer<T," << N << ">[" << this << "]::zero(" << n << ")" << std::endl;
#endif
size_t available = getWriteSpace();
int available = getWriteSpace();
if (n > available) {
#ifdef DEBUG_RINGBUFFER
std::cerr << "WARNING: Only room for " << available << " samples"
@ -606,17 +634,20 @@ RingBuffer<T, N>::zero(size_t n)
}
if (n == 0) return n;
size_t writer = m_writer;
size_t here = m_size - writer;
int writer = m_writer;
int here = m_size - writer;
T *const R__ bufbase = m_buffer + writer;
if (here >= n) {
for (size_t i = 0; i < n; ++i) {
(m_buffer + writer)[i] = 0;
for (int i = 0; i < n; ++i) {
bufbase[i] = 0;
}
} else {
for (size_t i = 0; i < here; ++i) {
(m_buffer + writer)[i] = 0;
for (int i = 0; i < here; ++i) {
bufbase[i] = 0;
}
for (size_t i = 0; i < (n - here); ++i) {
const int nh = n - here;
for (int i = 0; i < nh; ++i) {
m_buffer[i] = 0;
}
}
@ -634,4 +665,6 @@ RingBuffer<T, N>::zero(size_t n)
}
//#include "RingBuffer.cpp"
#endif // _RINGBUFFER_H_

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -22,8 +22,7 @@ RubberBandStretcher::RubberBandStretcher(size_t sampleRate,
Options options,
double initialTimeRatio,
double initialPitchScale) :
TimeStretcher(sampleRate, channels),
m_d(new Impl(this, sampleRate, channels, options,
m_d(new Impl(sampleRate, channels, options,
initialTimeRatio, initialPitchScale))
{
}
@ -81,6 +80,18 @@ RubberBandStretcher::setPhaseOption(Options options)
m_d->setPhaseOption(options);
}
void
RubberBandStretcher::setFormantOption(Options options)
{
m_d->setFormantOption(options);
}
void
RubberBandStretcher::setPitchOption(Options options)
{
m_d->setPitchOption(options);
}
void
RubberBandStretcher::setExpectedInputDuration(size_t samples)
{

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -17,9 +17,12 @@
#include <vector>
#include <list>
#include <sys/time.h>
#include <iostream>
#ifndef WIN32
#include <sys/time.h>
#endif
#include "Thread.h"
#include "sysutils.h"

View file

@ -0,0 +1,69 @@
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "SilentAudioCurve.h"
#include <cmath>
namespace RubberBand
{
SilentAudioCurve::SilentAudioCurve(size_t sampleRate, size_t windowSize) :
AudioCurve(sampleRate, windowSize)
{
}
SilentAudioCurve::~SilentAudioCurve()
{
}
void
SilentAudioCurve::reset()
{
}
void
SilentAudioCurve::setWindowSize(size_t newSize)
{
m_windowSize = newSize;
}
float
SilentAudioCurve::process(const float *R__ mag, size_t)
{
const int hs = m_windowSize / 2;
static float threshold = powf(10.f, -6);
for (int i = 0; i <= hs; ++i) {
if (mag[i] > threshold) return 0.f;
}
return 1.f;
}
float
SilentAudioCurve::process(const double *R__ mag, size_t)
{
const int hs = m_windowSize / 2;
static double threshold = pow(10.0, -6);
for (int i = 0; i <= hs; ++i) {
if (mag[i] > threshold) return 0.f;
}
return 1.f;
}
}

View file

@ -0,0 +1,38 @@
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#ifndef _SILENT_AUDIO_CURVE_H_
#define _SILENT_AUDIO_CURVE_H_
#include "AudioCurve.h"
namespace RubberBand
{
class SilentAudioCurve : public AudioCurve
{
public:
SilentAudioCurve(size_t sampleRate, size_t windowSize);
virtual ~SilentAudioCurve();
virtual void setWindowSize(size_t newSize);
virtual float process(const float *R__ mag, size_t increment);
virtual float process(const double *R__ mag, size_t increment);
virtual void reset();
};
}
#endif

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -20,7 +20,7 @@ namespace RubberBand
SpectralDifferenceAudioCurve::SpectralDifferenceAudioCurve(size_t sampleRate, size_t windowSize) :
AudioCurve(sampleRate, windowSize)
{
m_prevMag = new double[m_windowSize/2 + 1];
m_prevMag = new float[m_windowSize/2 + 1];
for (size_t i = 0; i <= m_windowSize/2; ++i) {
m_prevMag[i] = 0.f;
@ -43,11 +43,16 @@ SpectralDifferenceAudioCurve::reset()
void
SpectralDifferenceAudioCurve::setWindowSize(size_t newSize)
{
delete[] m_prevMag;
m_windowSize = newSize;
m_prevMag = new float[m_windowSize/2 + 1];
reset();
}
float
SpectralDifferenceAudioCurve::process(float *mag, size_t increment)
SpectralDifferenceAudioCurve::process(const float *R__ mag, size_t increment)
{
float result = 0.0;

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -30,11 +30,11 @@ public:
virtual void setWindowSize(size_t newSize);
virtual float process(float *mag, size_t increment);
virtual float process(const float *R__ mag, size_t increment);
virtual void reset();
protected:
double *m_prevMag;
float *R__ m_prevMag;
};
}

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -20,6 +20,9 @@
#include <deque>
#include <set>
#include <cassert>
#include <algorithm>
#include "sysutils.h"
namespace RubberBand
{
@ -163,9 +166,11 @@ StretchCalculator::calculate(double ratio, size_t inputDuration,
int
StretchCalculator::calculateSingle(double ratio,
size_t inputDurationSoFar,
float df)
float df,
size_t increment)
{
if (increment == 0) increment = m_increment;
bool isTransient = false;
// We want to ensure, as close as possible, that the phase reset
@ -177,10 +182,10 @@ StretchCalculator::calculateSingle(double ratio,
// from the ratio directly. For the moment we're happy if it
// works well in common situations.
float transientThreshold = 0.35;
if (ratio > 1) transientThreshold = 0.25;
float transientThreshold = 0.35f;
if (ratio > 1) transientThreshold = 0.25f;
if (m_useHardPeaks && df > m_prevDf * 1.1 && df > transientThreshold) {
if (m_useHardPeaks && df > m_prevDf * 1.1f && df > transientThreshold) {
isTransient = true;
}
@ -191,39 +196,41 @@ StretchCalculator::calculateSingle(double ratio,
m_prevDf = df;
bool ratioChanged = (ratio != m_prevRatio);
m_prevRatio = ratio;
if (isTransient && m_transientAmnesty == 0) {
if (m_debugLevel > 1) {
std::cerr << "StretchCalculator::calculateSingle: transient found at "
<< inputDurationSoFar << std::endl;
std::cerr << "StretchCalculator::calculateSingle: transient"
<< std::endl;
}
m_divergence += m_increment - (m_increment * ratio);
m_divergence += increment - (increment * ratio);
// as in offline mode, 0.05 sec approx min between transients
m_transientAmnesty =
lrint(ceil(double(m_sampleRate) / (20 * double(m_increment))));
lrint(ceil(double(m_sampleRate) / (20 * double(increment))));
m_recovery = m_divergence / ((m_sampleRate / 10.0) / m_increment);
return -m_increment;
m_recovery = m_divergence / ((m_sampleRate / 10.0) / increment);
return -int(increment);
}
if (m_prevRatio != ratio) {
m_recovery = m_divergence / ((m_sampleRate / 10.0) / m_increment);
m_prevRatio = ratio;
if (ratioChanged) {
m_recovery = m_divergence / ((m_sampleRate / 10.0) / increment);
}
if (m_transientAmnesty > 0) --m_transientAmnesty;
int incr = lrint(m_increment * ratio - m_recovery);
int incr = lrint(increment * ratio - m_recovery);
if (m_debugLevel > 2 || (m_debugLevel > 1 && m_divergence != 0)) {
std::cerr << "divergence = " << m_divergence << ", recovery = " << m_recovery << ", incr = " << incr << ", ";
}
if (incr < lrint((m_increment * ratio) / 2)) {
incr = lrint((m_increment * ratio) / 2);
} else if (incr > lrint(m_increment * ratio * 2)) {
incr = lrint(m_increment * ratio * 2);
if (incr < lrint((increment * ratio) / 2)) {
incr = lrint((increment * ratio) / 2);
} else if (incr > lrint(increment * ratio * 2)) {
incr = lrint(increment * ratio * 2);
}
double divdiff = (m_increment * ratio) - incr;
double divdiff = (increment * ratio) - incr;
if (m_debugLevel > 2 || (m_debugLevel > 1 && m_divergence != 0)) {
std::cerr << "divdiff = " << divdiff << std::endl;
@ -233,7 +240,7 @@ StretchCalculator::calculateSingle(double ratio,
m_divergence -= divdiff;
if ((prevDivergence < 0 && m_divergence > 0) ||
(prevDivergence > 0 && m_divergence < 0)) {
m_recovery = m_divergence / ((m_sampleRate / 10.0) / m_increment);
m_recovery = m_divergence / ((m_sampleRate / 10.0) / increment);
}
return incr;

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -45,9 +45,12 @@ public:
* phase-lock audio curve. State is retained between calls in the
* StretchCalculator object; call reset() to reset it. This uses
* a less sophisticated method than the offline calculate().
*
* If increment is non-zero, use it for the input increment for
* this block in preference to m_increment.
*/
virtual int calculateSingle(double ratio, size_t inputDurationSoFar,
float curveValue);
virtual int calculateSingle(double ratio, float curveValue,
size_t increment = 0);
void setUseHardPeaks(bool use) { m_useHardPeaks = use; }

View file

@ -1,22 +1,39 @@
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "StretcherChannelData.h"
#include "Resampler.h"
namespace RubberBand
{
RubberBandStretcher::Impl::ChannelData::ChannelData(size_t windowSize,
size_t outbufSize)
int overSample,
size_t outbufSize) :
oversample(overSample)
{
std::set<size_t> s;
construct(s, windowSize, outbufSize);
}
RubberBandStretcher::Impl::ChannelData::ChannelData(const std::set<size_t> &windowSizes,
int overSample,
size_t initialWindowSize,
size_t outbufSize)
size_t outbufSize) :
oversample(overSample)
{
construct(windowSizes, initialWindowSize, outbufSize);
}
@ -37,7 +54,8 @@ RubberBandStretcher::Impl::ChannelData::construct(const std::set<size_t> &window
if (initialWindowSize > maxSize) maxSize = initialWindowSize;
}
size_t realSize = maxSize/2 + 1; // size of the real "half" of freq data
// max size of the real "half" of freq data
size_t realSize = (maxSize * oversample)/2 + 1;
// std::cerr << "ChannelData::construct([" << windowSizes.size() << "], " << maxSize << ", " << outbufSize << ")" << std::endl;
@ -46,24 +64,27 @@ RubberBandStretcher::Impl::ChannelData::construct(const std::set<size_t> &window
inbuf = new RingBuffer<float>(maxSize);
outbuf = new RingBuffer<float>(outbufSize);
mag = new double[realSize];
phase = new double[realSize];
prevPhase = new double[realSize];
unwrappedPhase = new double[realSize];
mag = allocDouble(realSize);
phase = allocDouble(realSize);
prevPhase = allocDouble(realSize);
prevError = allocDouble(realSize);
unwrappedPhase = allocDouble(realSize);
envelope = allocDouble(realSize);
freqPeak = new size_t[realSize];
accumulator = new float[maxSize];
windowAccumulator = new float[maxSize];
fltbuf = allocFloat(maxSize);
fltbuf = new float[maxSize];
accumulator = allocFloat(maxSize);
windowAccumulator = allocFloat(maxSize);
for (std::set<size_t>::const_iterator i = windowSizes.begin();
i != windowSizes.end(); ++i) {
ffts[*i] = new FFT(*i);
ffts[*i] = new FFT(*i * oversample);
ffts[*i]->initDouble();
}
if (windowSizes.find(initialWindowSize) == windowSizes.end()) {
ffts[initialWindowSize] = new FFT(initialWindowSize);
ffts[initialWindowSize] = new FFT(initialWindowSize * oversample);
ffts[initialWindowSize]->initDouble();
}
fft = ffts[initialWindowSize];
@ -77,29 +98,19 @@ RubberBandStretcher::Impl::ChannelData::construct(const std::set<size_t> &window
reset();
for (size_t i = 0; i < realSize; ++i) {
mag[i] = 0.0;
phase[i] = 0.0;
prevPhase[i] = 0.0;
unwrappedPhase[i] = 0.0;
freqPeak[i] = 0;
}
for (size_t i = 0; i < initialWindowSize; ++i) {
for (size_t i = 0; i < initialWindowSize * oversample; ++i) {
dblbuf[i] = 0.0;
}
for (size_t i = 0; i < maxSize; ++i) {
accumulator[i] = 0.f;
windowAccumulator[i] = 0.f;
fltbuf[i] = 0.0;
}
}
void
RubberBandStretcher::Impl::ChannelData::setWindowSize(size_t windowSize)
{
size_t oldSize = inbuf->getSize();
size_t realSize = windowSize/2 + 1;
size_t realSize = (windowSize * oversample) / 2 + 1;
// std::cerr << "ChannelData::setWindowSize(" << windowSize << ") [from " << oldSize << "]" << std::endl;
@ -114,7 +125,7 @@ RubberBandStretcher::Impl::ChannelData::setWindowSize(size_t windowSize)
if (ffts.find(windowSize) == ffts.end()) {
//!!! this also requires a lock, but it shouldn't occur in
//RT mode with proper initialisation
ffts[windowSize] = new FFT(windowSize);
ffts[windowSize] = new FFT(windowSize * oversample);
ffts[windowSize]->initDouble();
}
@ -122,7 +133,7 @@ RubberBandStretcher::Impl::ChannelData::setWindowSize(size_t windowSize)
dblbuf = fft->getDoubleTimeBuffer();
for (size_t i = 0; i < windowSize; ++i) {
for (size_t i = 0; i < windowSize * oversample; ++i) {
dblbuf[i] = 0.0;
}
@ -130,6 +141,7 @@ RubberBandStretcher::Impl::ChannelData::setWindowSize(size_t windowSize)
mag[i] = 0.0;
phase[i] = 0.0;
prevPhase[i] = 0.0;
prevError[i] = 0.0;
unwrappedPhase[i] = 0.0;
freqPeak[i] = 0;
}
@ -150,54 +162,46 @@ RubberBandStretcher::Impl::ChannelData::setWindowSize(size_t windowSize)
// We don't want to preserve data in these arrays
delete[] mag;
delete[] phase;
delete[] prevPhase;
delete[] unwrappedPhase;
delete[] freqPeak;
mag = allocDouble(mag, realSize);
phase = allocDouble(phase, realSize);
prevPhase = allocDouble(prevPhase, realSize);
prevError = allocDouble(prevError, realSize);
unwrappedPhase = allocDouble(unwrappedPhase, realSize);
envelope = allocDouble(envelope, realSize);
mag = new double[realSize];
phase = new double[realSize];
prevPhase = new double[realSize];
unwrappedPhase = new double[realSize];
delete[] freqPeak;
freqPeak = new size_t[realSize];
delete[] fltbuf;
fltbuf = new float[windowSize];
fltbuf = allocFloat(fltbuf, windowSize);
// But we do want to preserve data in these
float *newAcc = new float[windowSize];
float *newAcc = allocFloat(windowSize);
for (size_t i = 0; i < oldSize; ++i) newAcc[i] = accumulator[i];
delete[] accumulator;
freeFloat(accumulator);
accumulator = newAcc;
newAcc = new float[windowSize];
newAcc = allocFloat(windowSize);
for (size_t i = 0; i < oldSize; ++i) newAcc[i] = windowAccumulator[i];
delete[] windowAccumulator;
freeFloat(windowAccumulator);
windowAccumulator = newAcc;
//!!! and resampler?
for (size_t i = 0; i < realSize; ++i) {
mag[i] = 0.0;
phase[i] = 0.0;
prevPhase[i] = 0.0;
unwrappedPhase[i] = 0.0;
freqPeak[i] = 0;
}
for (size_t i = 0; i < windowSize; ++i) {
fltbuf[i] = 0.0;
}
for (size_t i = oldSize; i < windowSize; ++i) {
accumulator[i] = 0.f;
windowAccumulator[i] = 0.f;
fltbuf[i] = 0.f;
}
if (ffts.find(windowSize) == ffts.end()) {
ffts[windowSize] = new FFT(windowSize);
ffts[windowSize] = new FFT(windowSize * oversample);
ffts[windowSize]->initDouble();
}
@ -205,7 +209,7 @@ RubberBandStretcher::Impl::ChannelData::setWindowSize(size_t windowSize)
dblbuf = fft->getDoubleTimeBuffer();
for (size_t i = 0; i < windowSize; ++i) {
for (size_t i = 0; i < windowSize * oversample; ++i) {
dblbuf[i] = 0.0;
}
}
@ -228,21 +232,32 @@ RubberBandStretcher::Impl::ChannelData::setOutbufSize(size_t outbufSize)
}
}
void
RubberBandStretcher::Impl::ChannelData::setResampleBufSize(size_t sz)
{
resamplebuf = allocFloat(resamplebuf, sz);
resamplebufSize = sz;
}
RubberBandStretcher::Impl::ChannelData::~ChannelData()
{
delete resampler;
delete[] resamplebuf;
freeFloat(resamplebuf);
delete inbuf;
delete outbuf;
delete[] mag;
delete[] phase;
delete[] prevPhase;
delete[] unwrappedPhase;
freeDouble(mag);
freeDouble(phase);
freeDouble(prevPhase);
freeDouble(prevError);
freeDouble(unwrappedPhase);
freeDouble(envelope);
delete[] freqPeak;
delete[] accumulator;
delete[] windowAccumulator;
delete[] fltbuf;
freeFloat(accumulator);
freeFloat(windowAccumulator);
freeFloat(fltbuf);
for (std::map<size_t, FFT *>::iterator i = ffts.begin();
i != ffts.end(); ++i) {
@ -264,6 +279,7 @@ RubberBandStretcher::Impl::ChannelData::reset()
inCount = 0;
inputSize = -1;
outCount = 0;
unchanged = true;
draining = false;
outputComplete = false;
}

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -19,6 +19,8 @@
#include <set>
//#define EXPERIMENT 1
namespace RubberBand
{
@ -39,7 +41,7 @@ public:
* the pitch scale factor and any maximum processing block
* size specified by the user of the code.
*/
ChannelData(size_t windowSize, size_t outbufSize);
ChannelData(size_t windowSize, int overSample, size_t outbufSize);
/**
* Construct a ChannelData structure that can process at
@ -54,7 +56,7 @@ public:
* called subsequently.
*/
ChannelData(const std::set<size_t> &windowSizes,
size_t initialWindowSize, size_t outbufSize);
int overSample, size_t initialWindowSize, size_t outbufSize);
~ChannelData();
/**
@ -76,6 +78,12 @@ public:
*/
void setOutbufSize(size_t outbufSize);
/**
* Set the resampler buffer size. Default if not called is no
* buffer allocated at all.
*/
void setResampleBufSize(size_t resamplebufSize);
RingBuffer<float> *inbuf;
RingBuffer<float> *outbuf;
@ -83,8 +91,10 @@ public:
double *phase;
double *prevPhase;
double *prevError;
double *unwrappedPhase;
size_t *freqPeak;
float *accumulator;
@ -93,6 +103,8 @@ public:
float *fltbuf;
double *dblbuf; // owned by FFT object, only used for time domain FFT i/o
double *envelope; // for cepstral formant shift
bool unchanged;
size_t prevIncrement; // only used in RT mode
@ -111,6 +123,8 @@ public:
float *resamplebuf;
size_t resamplebufSize;
int oversample;
private:
void construct(const std::set<size_t> &windowSizes,
size_t initialWindowSize, size_t outbufSize);

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -16,10 +16,12 @@
#include "PercussiveAudioCurve.h"
#include "HighFrequencyAudioCurve.h"
#include "SpectralDifferenceAudioCurve.h"
#include "SilentAudioCurve.h"
#include "ConstantAudioCurve.h"
#include "StretchCalculator.h"
#include "StretcherChannelData.h"
#include "Resampler.h"
#include "Profiler.h"
#include <cassert>
#include <cmath>
@ -34,6 +36,7 @@ using std::set;
using std::max;
using std::min;
namespace RubberBand {
const size_t
@ -46,13 +49,13 @@ int
RubberBandStretcher::Impl::m_defaultDebugLevel = 0;
RubberBandStretcher::Impl::Impl(RubberBandStretcher *stretcher,
size_t sampleRate,
RubberBandStretcher::Impl::Impl(size_t sampleRate,
size_t channels,
Options options,
double initialTimeRatio,
double initialPitchScale) :
m_stretcher(stretcher),
m_sampleRate(sampleRate),
m_channels(channels),
m_timeRatio(initialTimeRatio),
m_pitchScale(initialPitchScale),
@ -70,23 +73,26 @@ RubberBandStretcher::Impl::Impl(RubberBandStretcher *stretcher,
m_studyFFT(0),
m_spaceAvailable("space"),
m_inputDuration(0),
m_silentHistory(0),
m_lastProcessOutputIncrements(16),
m_lastProcessPhaseResetDf(16),
m_phaseResetAudioCurve(0),
m_stretchAudioCurve(0),
m_silentAudioCurve(0),
m_stretchCalculator(0),
m_freq0(600),
m_freq1(1200),
m_freq2(12000),
m_baseWindowSize(m_defaultWindowSize)
{
if (m_debugLevel > 0) {
cerr << "RubberBandStretcher::Impl::Impl: rate = " << m_stretcher->m_sampleRate << ", options = " << options << endl;
cerr << "RubberBandStretcher::Impl::Impl: rate = " << m_sampleRate << ", options = " << options << endl;
}
// Window size will vary according to the audio sample rate, but
// we don't let it drop below the 48k default
m_rateMultiple = float(m_stretcher->m_sampleRate) / 48000.f;
m_rateMultiple = float(m_sampleRate) / 48000.f;
if (m_rateMultiple < 1.f) m_rateMultiple = 1.f;
m_baseWindowSize = roundUp(int(m_defaultWindowSize * m_rateMultiple));
@ -160,6 +166,7 @@ RubberBandStretcher::Impl::~Impl()
delete m_phaseResetAudioCurve;
delete m_stretchAudioCurve;
delete m_silentAudioCurve;
delete m_stretchCalculator;
delete m_studyFFT;
@ -193,7 +200,9 @@ RubberBandStretcher::Impl::reset()
m_mode = JustCreated;
if (m_phaseResetAudioCurve) m_phaseResetAudioCurve->reset();
if (m_stretchAudioCurve) m_stretchAudioCurve->reset();
if (m_silentAudioCurve) m_silentAudioCurve->reset();
m_inputDuration = 0;
m_silentHistory = 0;
if (m_threaded) m_threadSetMutex.unlock();
@ -227,9 +236,25 @@ RubberBandStretcher::Impl::setPitchScale(double fs)
}
if (fs == m_pitchScale) return;
bool was1 = (m_pitchScale == 1.f);
bool rbs = resampleBeforeStretching();
m_pitchScale = fs;
reconfigure();
if (!(m_options & OptionPitchHighConsistency) &&
(was1 || resampleBeforeStretching() != rbs) &&
m_pitchScale != 1.f) {
// resampling mode has changed
for (int c = 0; c < int(m_channels); ++c) {
if (m_channelData[c]->resampler) {
m_channelData[c]->resampler->reset();
}
}
}
}
double
@ -321,31 +346,62 @@ RubberBandStretcher::Impl::calculateSizes()
if (m_realtime) {
// use a fixed input increment
inputIncrement = roundUp(int(m_defaultIncrement * m_rateMultiple));
if (r < 1) {
bool rsb = (m_pitchScale < 1.0 && !resampleBeforeStretching());
float windowIncrRatio = 4.5;
if (r == 1.0) windowIncrRatio = 4;
else if (rsb) windowIncrRatio = 4.5;
else windowIncrRatio = 6;
inputIncrement = int(windowSize / windowIncrRatio);
outputIncrement = int(floor(inputIncrement * r));
if (outputIncrement < 1) {
outputIncrement = 1;
inputIncrement = roundUp(lrint(ceil(outputIncrement / r)));
windowSize = inputIncrement * 4;
// Very long stretch or very low pitch shift
if (outputIncrement < m_defaultIncrement / 4) {
if (outputIncrement < 1) outputIncrement = 1;
while (outputIncrement < m_defaultIncrement / 4 &&
windowSize < m_baseWindowSize * 4) {
outputIncrement *= 2;
inputIncrement = lrint(ceil(outputIncrement / r));
windowSize = roundUp(lrint(ceil(inputIncrement * windowIncrRatio)));
}
}
} else {
outputIncrement = int(ceil(inputIncrement * r));
while (outputIncrement > 1024 && inputIncrement > 1) {
inputIncrement /= 2;
outputIncrement = lrint(ceil(inputIncrement * r));
bool rsb = (m_pitchScale > 1.0 && resampleBeforeStretching());
float windowIncrRatio = 4.5;
if (r == 1.0) windowIncrRatio = 4;
else if (rsb) windowIncrRatio = 4.5;
else windowIncrRatio = 6;
outputIncrement = int(windowSize / windowIncrRatio);
inputIncrement = int(outputIncrement / r);
while (outputIncrement > 1024 * m_rateMultiple &&
inputIncrement > 1) {
outputIncrement /= 2;
inputIncrement = int(outputIncrement / r);
}
size_t minwin = roundUp(lrint(outputIncrement * windowIncrRatio));
if (windowSize < minwin) windowSize = minwin;
if (rsb) {
// cerr << "adjusting window size from " << windowSize;
size_t newWindowSize = roundUp(lrint(windowSize / m_pitchScale));
if (newWindowSize < 512) newWindowSize = 512;
size_t div = windowSize / newWindowSize;
if (inputIncrement > div && outputIncrement > div) {
inputIncrement /= div;
outputIncrement /= div;
windowSize /= div;
}
// cerr << " to " << windowSize << " (inputIncrement = " << inputIncrement << ", outputIncrement = " << outputIncrement << ")" << endl;
}
windowSize = std::max(windowSize, roundUp(outputIncrement * 6));
if (r > 5) while (windowSize < 8192) windowSize *= 2;
}
} else {
// use a variable increment
if (r < 1) {
inputIncrement = windowSize / 4;
while (inputIncrement >= 512) inputIncrement /= 2;
@ -365,7 +421,7 @@ RubberBandStretcher::Impl::calculateSizes()
windowSize = std::max(windowSize, roundUp(outputIncrement * 6));
if (r > 5) while (windowSize < 8192) windowSize *= 2;
}
}
}
if (m_expectedInputDuration > 0) {
while (inputIncrement * 4 > m_expectedInputDuration &&
@ -450,8 +506,9 @@ RubberBandStretcher::Impl::configure()
set<size_t> windowSizes;
if (m_realtime) {
windowSizes.insert(m_baseWindowSize);
windowSizes.insert(m_baseWindowSize / 2);
windowSizes.insert(m_baseWindowSize * 2);
windowSizes.insert(m_baseWindowSize * 4);
// windowSizes.insert(m_baseWindowSize * 4);
}
windowSizes.insert(m_windowSize);
@ -479,24 +536,27 @@ RubberBandStretcher::Impl::configure()
for (size_t c = 0; c < m_channels; ++c) {
m_channelData.push_back
(new ChannelData(windowSizes, m_windowSize, m_outbufSize));
(new ChannelData(windowSizes, 1, m_windowSize, m_outbufSize));
}
}
if (!m_realtime && windowSizeChanged) {
delete m_studyFFT;
m_studyFFT = new FFT(m_windowSize);
m_studyFFT = new FFT(m_windowSize, m_debugLevel);
m_studyFFT->initFloat();
}
if (m_pitchScale != 1.0 || m_realtime) {
if (m_pitchScale != 1.0 ||
(m_options & OptionPitchHighConsistency) ||
m_realtime) {
for (size_t c = 0; c < m_channels; ++c) {
if (m_channelData[c]->resampler) continue;
m_channelData[c]->resampler =
new Resampler(Resampler::FastestTolerable, 1, 4096 * 16);
new Resampler(Resampler::FastestTolerable, 1, 4096 * 16,
m_debugLevel);
// rbs is the amount of buffer space we think we'll need
// for resampling; but allocate a sensible amount in case
@ -504,32 +564,36 @@ RubberBandStretcher::Impl::configure()
size_t rbs =
lrintf(ceil((m_increment * m_timeRatio * 2) / m_pitchScale));
if (rbs < m_increment * 16) rbs = m_increment * 16;
m_channelData[c]->resamplebufSize = rbs;
m_channelData[c]->resamplebuf = new float[rbs];
m_channelData[c]->setResampleBufSize(rbs);
}
}
delete m_phaseResetAudioCurve;
m_phaseResetAudioCurve = new PercussiveAudioCurve(m_stretcher->m_sampleRate,
m_windowSize);
// stretchAudioCurve is unused in RT mode; phaseResetAudioCurve,
// silentAudioCurve and stretchCalculator however are used in all
// modes
// stretchAudioCurve unused in RT mode; phaseResetAudioCurve and
// stretchCalculator however are used in all modes
delete m_phaseResetAudioCurve;
m_phaseResetAudioCurve = new PercussiveAudioCurve
(m_sampleRate, m_windowSize);
delete m_silentAudioCurve;
m_silentAudioCurve = new SilentAudioCurve
(m_sampleRate, m_windowSize);
if (!m_realtime) {
delete m_stretchAudioCurve;
if (!(m_options & OptionStretchPrecise)) {
m_stretchAudioCurve = new SpectralDifferenceAudioCurve
(m_stretcher->m_sampleRate, m_windowSize);
(m_sampleRate, m_windowSize);
} else {
m_stretchAudioCurve = new ConstantAudioCurve
(m_stretcher->m_sampleRate, m_windowSize);
(m_sampleRate, m_windowSize);
}
}
delete m_stretchCalculator;
m_stretchCalculator = new StretchCalculator
(m_stretcher->m_sampleRate, m_increment,
(m_sampleRate, m_increment,
!(m_options & OptionTransientsSmooth));
m_stretchCalculator->setDebugLevel(m_debugLevel);
@ -565,6 +629,7 @@ RubberBandStretcher::Impl::reconfigure()
calculateStretch();
m_phaseResetDf.clear();
m_stretchDf.clear();
m_silence.clear();
m_inputDuration = 0;
}
configure();
@ -609,12 +674,11 @@ RubberBandStretcher::Impl::reconfigure()
std::cerr << "WARNING: reconfigure(): resampler construction required in RT mode" << std::endl;
m_channelData[c]->resampler =
new Resampler(Resampler::FastestTolerable, 1, m_windowSize);
new Resampler(Resampler::FastestTolerable, 1, m_windowSize,
m_debugLevel);
m_channelData[c]->resamplebufSize =
lrintf(ceil((m_increment * m_timeRatio * 2) / m_pitchScale));
m_channelData[c]->resamplebuf =
new float[m_channelData[c]->resamplebufSize];
m_channelData[c]->setResampleBufSize
(lrintf(ceil((m_increment * m_timeRatio * 2) / m_pitchScale)));
}
}
@ -637,9 +701,9 @@ RubberBandStretcher::Impl::setTransientsOption(Options options)
cerr << "RubberBandStretcher::Impl::setTransientsOption: Not permissible in non-realtime mode" << endl;
return;
}
m_options &= ~(OptionTransientsMixed |
OptionTransientsSmooth |
OptionTransientsCrisp);
int mask = (OptionTransientsMixed | OptionTransientsSmooth | OptionTransientsCrisp);
m_options &= ~mask;
options &= mask;
m_options |= options;
m_stretchCalculator->setUseHardPeaks
@ -649,15 +713,46 @@ RubberBandStretcher::Impl::setTransientsOption(Options options)
void
RubberBandStretcher::Impl::setPhaseOption(Options options)
{
m_options &= ~(OptionPhaseAdaptive |
OptionPhasePeakLocked |
OptionPhaseIndependent);
int mask = (OptionPhaseLaminar | OptionPhaseIndependent);
m_options &= ~mask;
options &= mask;
m_options |= options;
}
void
RubberBandStretcher::Impl::setFormantOption(Options options)
{
int mask = (OptionFormantShifted | OptionFormantPreserved);
m_options &= ~mask;
options &= mask;
m_options |= options;
}
void
RubberBandStretcher::Impl::setPitchOption(Options options)
{
if (!m_realtime) {
cerr << "RubberBandStretcher::Impl::setPitchOption: Pitch option is not used in non-RT mode" << endl;
return;
}
Options prior = m_options;
int mask = (OptionPitchHighQuality |
OptionPitchHighSpeed |
OptionPitchHighConsistency);
m_options &= ~mask;
options &= mask;
m_options |= options;
if (prior != m_options) reconfigure();
}
void
RubberBandStretcher::Impl::study(const float *const *input, size_t samples, bool final)
{
Profiler profiler("RubberBandStretcher::Impl::study");
if (m_realtime) {
if (m_debugLevel > 1) {
cerr << "RubberBandStretcher::Impl::study: Not meaningful in realtime mode" << endl;
@ -715,8 +810,8 @@ RubberBandStretcher::Impl::study(const float *const *input, size_t samples, bool
consumed += writable;
}
while ((inbuf.getReadSpace() >= m_windowSize) ||
(final && (inbuf.getReadSpace() >= m_windowSize/2))) {
while ((inbuf.getReadSpace() >= int(m_windowSize)) ||
(final && (inbuf.getReadSpace() >= int(m_windowSize/2)))) {
// We know we have at least m_windowSize samples available
// in m_inbuf. We need to peek m_windowSize of them for
@ -744,6 +839,13 @@ RubberBandStretcher::Impl::study(const float *const *input, size_t samples, bool
df = m_stretchAudioCurve->process(cd.fltbuf, m_increment);
m_stretchDf.push_back(df);
df = m_silentAudioCurve->process(cd.fltbuf, m_increment);
bool silent = (df > 0.f);
if (silent && m_debugLevel > 1) {
cerr << "silence found at " << m_inputDuration << endl;
}
m_silence.push_back(silent);
// cout << df << endl;
// We have augmented the input by m_windowSize/2 so
@ -817,12 +919,28 @@ RubberBandStretcher::Impl::getExactTimePoints() const
void
RubberBandStretcher::Impl::calculateStretch()
{
Profiler profiler("RubberBandStretcher::Impl::calculateStretch");
std::vector<int> increments = m_stretchCalculator->calculate
(getEffectiveRatio(),
m_inputDuration,
m_phaseResetDf,
m_stretchDf);
int history = 0;
for (size_t i = 0; i < increments.size(); ++i) {
if (i >= m_silence.size()) break;
if (m_silence[i]) ++history;
else history = 0;
if (history >= int(m_windowSize / m_increment) && increments[i] >= 0) {
increments[i] = -increments[i];
if (m_debugLevel > 1) {
std::cerr << "phase reset on silence (silent history == "
<< history << ")" << std::endl;
}
}
}
if (m_outputIncrements.empty()) m_outputIncrements = increments;
else {
for (size_t i = 0; i < increments.size(); ++i) {
@ -843,6 +961,8 @@ RubberBandStretcher::Impl::setDebugLevel(int level)
size_t
RubberBandStretcher::Impl::getSamplesRequired() const
{
Profiler profiler("RubberBandStretcher::Impl::getSamplesRequired");
size_t reqd = 0;
for (size_t c = 0; c < m_channels; ++c) {
@ -878,6 +998,8 @@ RubberBandStretcher::Impl::getSamplesRequired() const
void
RubberBandStretcher::Impl::process(const float *const *input, size_t samples, bool final)
{
Profiler profiler("RubberBandStretcher::Impl::process");
if (m_mode == Finished) {
cerr << "RubberBandStretcher::Impl::process: Cannot process again after final chunk" << endl;
return;
@ -913,15 +1035,13 @@ RubberBandStretcher::Impl::process(const float *const *input, size_t samples, bo
bool allConsumed = false;
map<size_t, size_t> consumed;
size_t *consumed = (size_t *)alloca(m_channels * sizeof(size_t));
for (size_t c = 0; c < m_channels; ++c) {
consumed[c] = 0;
}
while (!allConsumed) {
// cerr << "process looping" << endl;
//#ifndef NO_THREADING
// if (m_threaded) {
// pthread_mutex_lock(&m_inputProcessedMutex);
@ -935,10 +1055,12 @@ RubberBandStretcher::Impl::process(const float *const *input, size_t samples, bo
// have actually been processed.
allConsumed = true;
for (size_t c = 0; c < m_channels; ++c) {
consumed[c] += consumeChannel(c,
input[c] + consumed[c],
samples - consumed[c]);
samples - consumed[c],
final);
if (consumed[c] < samples) {
allConsumed = false;
// cerr << "process: waiting on input consumption for channel " << c << endl;
@ -981,6 +1103,9 @@ RubberBandStretcher::Impl::process(const float *const *input, size_t samples, bo
}
*/
}
// if (!allConsumed) cerr << "process looping" << endl;
}
// cerr << "process returning" << endl;
@ -988,36 +1113,6 @@ RubberBandStretcher::Impl::process(const float *const *input, size_t samples, bo
if (final) m_mode = Finished;
}
size_t
RubberBandStretcher::Impl::consumeChannel(size_t c, const float *input, size_t samples)
{
size_t consumed = 0;
ChannelData &cd = *m_channelData[c];
RingBuffer<float> &inbuf = *cd.inbuf;
while (consumed < samples) {
size_t writable = inbuf.getWriteSpace();
// cerr << "channel " << c << ": samples remaining = " << samples - consumed << ", writable space = " << writable << endl;
writable = min(writable, samples - consumed);
if (writable == 0) {
// warn
// cerr << "WARNING: writable == 0 for ch " << c << " (consumed = " << consumed << ", samples = " << samples << ")" << endl;
return consumed;
} else {
inbuf.write(input + consumed, writable);
consumed += writable;
cd.inCount += writable;
}
}
return samples;
}
}

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -34,8 +34,7 @@ class StretchCalculator;
class RubberBandStretcher::Impl
{
public:
Impl(RubberBandStretcher *stretcher,
size_t sampleRate, size_t channels, Options options,
Impl(size_t sampleRate, size_t channels, Options options,
double initialTimeRatio, double initialPitchScale);
~Impl();
@ -50,6 +49,8 @@ public:
void setTransientsOption(Options);
void setPhaseOption(Options);
void setFormantOption(Options);
void setPitchOption(Options);
void setExpectedInputDuration(size_t samples);
void setMaxProcessSize(size_t samples);
@ -83,10 +84,11 @@ public:
static void setDefaultDebugLevel(int level) { m_defaultDebugLevel = level; }
protected:
RubberBandStretcher *m_stretcher;
size_t m_sampleRate;
size_t m_channels;
size_t consumeChannel(size_t channel, const float *input, size_t samples);
size_t consumeChannel(size_t channel, const float *input,
size_t samples, bool final);
void processChunks(size_t channel, bool &any, bool &last);
bool processOneChunk(); // across all channels, for real time use
bool processChunkForChannel(size_t channel, size_t phaseIncrement,
@ -98,6 +100,7 @@ protected:
size_t &shiftIncrement, bool &phaseReset);
void analyseChunk(size_t channel);
void modifyChunk(size_t channel, size_t outputIncrement, bool phaseReset);
void formantShiftChunk(size_t channel);
void synthesiseChunk(size_t channel);
void writeChunk(size_t channel, size_t shiftIncrement, bool last);
@ -109,6 +112,8 @@ protected:
size_t roundUp(size_t value); // to next power of two
bool resampleBeforeStretching() const;
double m_timeRatio;
double m_pitchScale;
@ -161,6 +166,8 @@ protected:
size_t m_inputDuration;
std::vector<float> m_phaseResetDf;
std::vector<float> m_stretchDf;
std::vector<bool> m_silence;
int m_silentHistory;
class ChannelData;
std::vector<ChannelData *> m_channelData;
@ -172,6 +179,7 @@ protected:
AudioCurve *m_phaseResetAudioCurve;
AudioCurve *m_stretchAudioCurve;
AudioCurve *m_silentAudioCurve;
StretchCalculator *m_stretchCalculator;
float m_freq0;

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -19,11 +19,14 @@
#include "StretchCalculator.h"
#include "StretcherChannelData.h"
#include "Resampler.h"
#include "Profiler.h"
#include <cassert>
#include <cmath>
#include <set>
#include <map>
#include <deque>
using std::cerr;
using std::endl;
@ -97,9 +100,84 @@ RubberBandStretcher::Impl::ProcessThread::abandon()
m_abandoning = true;
}
bool
RubberBandStretcher::Impl::resampleBeforeStretching() const
{
// We can't resample before stretching in offline mode, because
// the stretch calculation is based on doing it the other way
// around. It would take more work (and testing) to enable this.
if (!m_realtime) return false;
if (m_options & OptionPitchHighQuality) {
return (m_pitchScale < 1.0); // better sound
} else if (m_options & OptionPitchHighConsistency) {
return false;
} else {
return (m_pitchScale > 1.0); // better performance
}
}
size_t
RubberBandStretcher::Impl::consumeChannel(size_t c, const float *input,
size_t samples, bool final)
{
Profiler profiler("RubberBandStretcher::Impl::consumeChannel");
ChannelData &cd = *m_channelData[c];
RingBuffer<float> &inbuf = *cd.inbuf;
size_t toWrite = samples;
size_t writable = inbuf.getWriteSpace();
bool resampling = resampleBeforeStretching();
if (resampling) {
toWrite = int(ceil(samples / m_pitchScale));
if (writable < toWrite) {
samples = int(floor(writable * m_pitchScale));
if (samples == 0) return 0;
}
size_t reqSize = int(ceil(samples / m_pitchScale));
if (reqSize > cd.resamplebufSize) {
cerr << "WARNING: RubberBandStretcher::Impl::consumeChannel: resizing resampler buffer from "
<< cd.resamplebufSize << " to " << reqSize << endl;
cd.setResampleBufSize(reqSize);
}
toWrite = cd.resampler->resample(&input,
&cd.resamplebuf,
samples,
1.0 / m_pitchScale,
final);
}
if (writable < toWrite) {
if (resampling) {
return 0;
}
toWrite = writable;
}
if (resampling) {
inbuf.write(cd.resamplebuf, toWrite);
cd.inCount += samples;
return samples;
} else {
inbuf.write(input, toWrite);
cd.inCount += toWrite;
return toWrite;
}
}
void
RubberBandStretcher::Impl::processChunks(size_t c, bool &any, bool &last)
{
Profiler profiler("RubberBandStretcher::Impl::processChunks");
// Process as many chunks as there are available on the input
// buffer for channel c. This requires that the increments have
// already been calculated.
@ -140,6 +218,8 @@ RubberBandStretcher::Impl::processChunks(size_t c, bool &any, bool &last)
bool
RubberBandStretcher::Impl::processOneChunk()
{
Profiler profiler("RubberBandStretcher::Impl::processOneChunk");
// Process a single chunk for all channels, provided there is
// enough data on each channel for at least one chunk. This is
// able to calculate increments as it goes along.
@ -173,6 +253,8 @@ RubberBandStretcher::Impl::processOneChunk()
bool
RubberBandStretcher::Impl::testInbufReadSpace(size_t c)
{
Profiler profiler("RubberBandStretcher::Impl::testInbufReadSpace");
ChannelData &cd = *m_channelData[c];
RingBuffer<float> &inbuf = *cd.inbuf;
@ -223,6 +305,8 @@ RubberBandStretcher::Impl::processChunkForChannel(size_t c,
size_t shiftIncrement,
bool phaseReset)
{
Profiler profiler("RubberBandStretcher::Impl::processChunkForChannel");
// Process a single chunk on a single channel. This assumes
// enough input data is available; caller must have tested this
// using e.g. testInbufReadSpace first. Return true if this is
@ -249,7 +333,7 @@ RubberBandStretcher::Impl::processChunkForChannel(size_t c,
// We need to peek m_windowSize samples for processing, and
// then skip m_increment to advance the read pointer.
modifyChunk(c, phaseIncrement, phaseReset);
synthesiseChunk(c); // reads from cd.mag, cd.phase
@ -284,7 +368,9 @@ RubberBandStretcher::Impl::processChunkForChannel(size_t c,
}
if (m_threaded) {
size_t required = shiftIncrement;
int required = shiftIncrement;
if (m_pitchScale != 1.0) {
required = int(required / m_pitchScale) + 1;
}
@ -313,6 +399,8 @@ RubberBandStretcher::Impl::calculateIncrements(size_t &phaseIncrementRtn,
size_t &shiftIncrementRtn,
bool &phaseReset)
{
Profiler profiler("RubberBandStretcher::Impl::calculateIncrements");
// cerr << "calculateIncrements" << endl;
// Calculate the next upcoming phase and shift increment, on the
@ -342,6 +430,8 @@ RubberBandStretcher::Impl::calculateIncrements(size_t &phaseIncrementRtn,
}
}
const int hs = m_windowSize/2 + 1;
// Normally we would mix down the time-domain signal and apply a
// single FFT, or else mix down the Cartesian form of the
// frequency-domain signal. Both of those would be inefficient
@ -352,22 +442,33 @@ RubberBandStretcher::Impl::calculateIncrements(size_t &phaseIncrementRtn,
// phases to cancel each other, and broadband effects will still
// be apparent.
for (size_t i = 0; i <= m_windowSize/2; ++i) {
cd.fltbuf[i] = 0.0;
}
float df = 0.f;
bool silent = false;
for (size_t c = 0; c < m_channels; ++c) {
for (size_t i = 0; i <= m_windowSize/2; ++i) {
cd.fltbuf[i] += m_channelData[c]->mag[i];
if (m_channels == 1) {
df = m_phaseResetAudioCurve->process(cd.mag, m_increment);
silent = (m_silentAudioCurve->process(cd.mag, m_increment) > 0.f);
} else {
double *tmp = (double *)alloca(hs * sizeof(double));
for (int i = 0; i < hs; ++i) {
tmp[i] = 0.0;
}
for (size_t c = 0; c < m_channels; ++c) {
for (int i = 0; i < hs; ++i) {
tmp[i] += m_channelData[c]->mag[i];
}
}
}
float df = m_phaseResetAudioCurve->process(cd.fltbuf, m_increment);
df = m_phaseResetAudioCurve->process(tmp, m_increment);
silent = (m_silentAudioCurve->process(tmp, m_increment) > 0.f);
}
int incr = m_stretchCalculator->calculateSingle
(getEffectiveRatio(),
m_inputDuration, //!!! no, totally wrong... fortunately it doesn't matter atm
df);
(getEffectiveRatio(), df, m_increment);
m_lastProcessPhaseResetDf.write(&df, 1);
m_lastProcessOutputIncrements.write(&incr, 1);
@ -399,6 +500,17 @@ RubberBandStretcher::Impl::calculateIncrements(size_t &phaseIncrementRtn,
}
cd.prevIncrement = shiftIncrementRtn;
if (silent) ++m_silentHistory;
else m_silentHistory = 0;
if (m_silentHistory >= int(m_windowSize / m_increment) && !phaseReset) {
phaseReset = true;
if (m_debugLevel > 1) {
cerr << "calculateIncrements: phase reset on silence (silent history == "
<< m_silentHistory << ")" << endl;
}
}
}
bool
@ -407,6 +519,8 @@ RubberBandStretcher::Impl::getIncrements(size_t channel,
size_t &shiftIncrementRtn,
bool &phaseReset)
{
Profiler profiler("RubberBandStretcher::Impl::getIncrements");
if (channel >= m_channels) {
phaseIncrementRtn = m_increment;
shiftIncrementRtn = m_increment;
@ -478,241 +592,366 @@ RubberBandStretcher::Impl::getIncrements(size_t channel,
void
RubberBandStretcher::Impl::analyseChunk(size_t channel)
{
size_t i;
Profiler profiler("RubberBandStretcher::Impl::analyseChunk");
int i;
ChannelData &cd = *m_channelData[channel];
double *const R__ dblbuf = cd.dblbuf;
float *const R__ fltbuf = cd.fltbuf;
int sz = m_windowSize;
int hs = m_windowSize/2;
// cd.fltbuf is known to contain m_windowSize samples
m_window->cut(cd.fltbuf);
m_window->cut(fltbuf);
for (i = 0; i < m_windowSize/2; ++i) {
cd.dblbuf[i] = cd.fltbuf[i + m_windowSize/2];
cd.dblbuf[i + m_windowSize/2] = cd.fltbuf[i];
if (cd.oversample > 1) {
int bufsiz = sz * cd.oversample;
int offset = (bufsiz - sz) / 2;
// eek
for (i = 0; i < offset; ++i) {
dblbuf[i] = 0.0;
}
for (i = 0; i < offset; ++i) {
dblbuf[bufsiz - i - 1] = 0.0;
}
for (i = 0; i < sz; ++i) {
dblbuf[offset + i] = fltbuf[i];
}
for (i = 0; i < bufsiz / 2; ++i) {
double tmp = dblbuf[i];
dblbuf[i] = dblbuf[i + bufsiz/2];
dblbuf[i + bufsiz/2] = tmp;
}
} else {
for (i = 0; i < hs; ++i) {
dblbuf[i] = fltbuf[i + hs];
dblbuf[i + hs] = fltbuf[i];
}
}
cd.fft->forwardPolar(cd.dblbuf, cd.mag, cd.phase);
cd.fft->forwardPolar(dblbuf, cd.mag, cd.phase);
}
double mod(double x, double y) { return x - (y * floor(x / y)); }
double princarg(double a) { return mod(a + M_PI, -2 * M_PI) + M_PI; }
static inline double mod(double x, double y) { return x - (y * floor(x / y)); }
static inline double princarg(double a) { return mod(a + M_PI, -2.0 * M_PI) + M_PI; }
void
RubberBandStretcher::Impl::modifyChunk(size_t channel, size_t outputIncrement,
RubberBandStretcher::Impl::modifyChunk(size_t channel,
size_t outputIncrement,
bool phaseReset)
{
Profiler profiler("RubberBandStretcher::Impl::modifyChunk");
ChannelData &cd = *m_channelData[channel];
if (phaseReset && m_debugLevel > 1) {
cerr << "phase reset: leaving phases unmodified" << endl;
}
size_t count = m_windowSize/2;
size_t pfp = 0;
double rate = m_stretcher->m_sampleRate;
const double rate = m_sampleRate;
const int sz = m_windowSize;
const int count = (sz * cd.oversample) / 2;
if (!(m_options & OptionPhaseIndependent)) {
bool unchanged = cd.unchanged && (outputIncrement == m_increment);
bool fullReset = phaseReset;
bool laminar = !(m_options & OptionPhaseIndependent);
bool bandlimited = (m_options & OptionTransientsMixed);
int bandlow = lrint((150 * sz * cd.oversample) / rate);
int bandhigh = lrint((1000 * sz * cd.oversample) / rate);
cd.freqPeak[0] = 0;
float freq0 = m_freq0;
float freq1 = m_freq1;
float freq2 = m_freq2;
float freq0 = m_freq0;
float freq1 = m_freq1;
float freq2 = m_freq2;
// As the stretch ratio increases, so the frequency thresholds
// for phase lamination should increase. Beyond a ratio of
// about 1.5, the threshold should be about 1200Hz; beyond a
// ratio of 2, we probably want no lamination to happen at all
// by default. This calculation aims for more or less that.
// We only do this if the phase option is OptionPhaseAdaptive
// (the default), i.e. not Independent or PeakLocked.
if (!(m_options & OptionPhasePeakLocked)) {
float r = getEffectiveRatio();
if (r > 1) {
float rf0 = 600 + (600 * ((r-1)*(r-1)*(r-1)*2));
float f1ratio = freq1 / freq0;
float f2ratio = freq2 / freq0;
freq0 = std::max(freq0, rf0);
freq1 = freq0 * f1ratio;
freq2 = freq0 * f2ratio;
}
if (laminar) {
float r = getEffectiveRatio();
if (r > 1) {
float rf0 = 600 + (600 * ((r-1)*(r-1)*(r-1)*2));
float f1ratio = freq1 / freq0;
float f2ratio = freq2 / freq0;
freq0 = std::max(freq0, rf0);
freq1 = freq0 * f1ratio;
freq2 = freq0 * f2ratio;
}
size_t limit0 = lrint((freq0 * m_windowSize) / rate);
size_t limit1 = lrint((freq1 * m_windowSize) / rate);
size_t limit2 = lrint((freq2 * m_windowSize) / rate);
size_t range = 0;
if (limit1 < limit0) limit1 = limit0;
if (limit2 < limit1) limit2 = limit1;
// cerr << "limit0 = " << limit0 << " limit1 = " << limit1 << " limit2 = " << limit2 << endl;
int peakCount = 0;
for (size_t i = 0; i <= count; ++i) {
double mag = cd.mag[i];
bool isPeak = true;
for (size_t j = 1; j <= range; ++j) {
if (mag < cd.mag[i-j]) {
isPeak = false;
break;
}
if (mag < cd.mag[i+j]) {
isPeak = false;
break;
}
}
if (isPeak) {
// i is a peak bin.
// The previous peak bin was at pfp; make freqPeak entries
// from pfp to half-way between pfp and i point at pfp, and
// those from the half-way mark to i point at i.
size_t halfway = (pfp + i) / 2;
if (halfway == pfp) halfway = pfp + 1;
for (size_t j = pfp + 1; j < halfway; ++j) {
cd.freqPeak[j] = pfp;
}
for (size_t j = halfway; j <= i; ++j) {
cd.freqPeak[j] = i;
}
pfp = i;
++peakCount;
}
if (i == limit0) range = 1;
if (i == limit1) range = 2;
if (i >= limit2) {
range = 3;
if (i + range + 1 > count) range = count - i;
}
}
// cerr << "peakCount = " << peakCount << endl;
cd.freqPeak[count-1] = count-1;
cd.freqPeak[count] = count;
}
double peakInPhase = 0.0;
double peakOutPhase = 0.0;
size_t p, pp;
int limit0 = lrint((freq0 * sz * cd.oversample) / rate);
int limit1 = lrint((freq1 * sz * cd.oversample) / rate);
int limit2 = lrint((freq2 * sz * cd.oversample) / rate);
for (size_t i = 0; i <= count; ++i) {
if (m_options & OptionPhaseIndependent) {
p = i;
pp = i-1;
} else {
p = cd.freqPeak[i];
pp = cd.freqPeak[i-1];
}
if (limit1 < limit0) limit1 = limit0;
if (limit2 < limit1) limit2 = limit1;
double prevInstability = 0.0;
bool prevDirection = false;
double distance = 0.0;
const double maxdist = 8.0;
const int lookback = 1;
double distacc = 0.0;
for (int i = count; i >= 0; i -= lookback) {
bool resetThis = phaseReset;
if (m_options & OptionTransientsMixed) {
size_t low = lrint((150 * m_windowSize) / rate);
size_t high = lrint((1000 * m_windowSize) / rate);
if (bandlimited) {
if (resetThis) {
if (i > low && i < high) resetThis = false;
if (i > bandlow && i < bandhigh) {
resetThis = false;
fullReset = false;
}
}
}
double p = cd.phase[i];
double perr = 0.0;
double outphase = p;
double mi = maxdist;
if (i <= limit0) mi = 0.0;
else if (i <= limit1) mi = 1.0;
else if (i <= limit2) mi = 3.0;
if (!resetThis) {
if (i == 0 || p != pp) {
double omega = (2 * M_PI * m_increment * p) / m_windowSize;
double expectedPhase = cd.prevPhase[p] + omega;
double phaseError = princarg(cd.phase[p] - expectedPhase);
double phaseIncrement = (omega + phaseError) / m_increment;
double unwrappedPhase = cd.unwrappedPhase[p] +
outputIncrement * phaseIncrement;
double omega = (2 * M_PI * m_increment * i) / (sz * cd.oversample);
cd.prevPhase[p] = cd.phase[p];
cd.phase[p] = unwrappedPhase;
cd.unwrappedPhase[p] = unwrappedPhase;
double pp = cd.prevPhase[i];
double ep = pp + omega;
perr = princarg(p - ep);
peakInPhase = cd.prevPhase[p];
peakOutPhase = unwrappedPhase;
double instability = fabs(perr - cd.prevError[i]);
bool direction = (perr > cd.prevError[i]);
bool inherit = false;
if (laminar) {
if (distance >= mi) {
inherit = false;
} else if (bandlimited && (i == bandhigh || i == bandlow)) {
inherit = false;
} else if (instability > prevInstability &&
direction == prevDirection) {
inherit = true;
}
}
if (i != p) {
double advance = outputIncrement * ((omega + perr) / m_increment);
double diffToPeak = peakInPhase - cd.phase[i];
double unwrappedPhase = peakOutPhase - diffToPeak;
cd.prevPhase[i] = cd.phase[i];
cd.phase[i] = unwrappedPhase;
cd.unwrappedPhase[i] = unwrappedPhase;
if (inherit) {
double inherited =
cd.unwrappedPhase[i + lookback] - cd.prevPhase[i + lookback];
advance = ((advance * distance) +
(inherited * (maxdist - distance)))
/ maxdist;
outphase = p + advance;
distacc += distance;
distance += 1.0;
} else {
outphase = cd.unwrappedPhase[i] + advance;
distance = 0.0;
}
prevInstability = instability;
prevDirection = direction;
} else {
cd.prevPhase[i] = cd.phase[i];
cd.unwrappedPhase[i] = cd.phase[i];
distance = 0.0;
}
cd.prevError[i] = perr;
cd.prevPhase[i] = p;
cd.phase[i] = outphase;
cd.unwrappedPhase[i] = outphase;
}
if (m_debugLevel > 1) {
cerr << "mean inheritance distance = " << distacc / count << endl;
}
if (fullReset) unchanged = true;
cd.unchanged = unchanged;
if (unchanged && m_debugLevel > 1) {
cerr << "frame unchanged on channel " << channel << endl;
}
}
void
RubberBandStretcher::Impl::formantShiftChunk(size_t channel)
{
Profiler profiler("RubberBandStretcher::Impl::formantShiftChunk");
ChannelData &cd = *m_channelData[channel];
double *const R__ mag = cd.mag;
double *const R__ envelope = cd.envelope;
double *const R__ dblbuf = cd.dblbuf;
const int sz = m_windowSize;
const int hs = m_windowSize/2;
const double denom = sz;
cd.fft->inverseCepstral(mag, dblbuf);
for (int i = 0; i < sz; ++i) {
dblbuf[i] /= denom;
}
const int cutoff = m_sampleRate / 700;
// cerr <<"cutoff = "<< cutoff << ", m_sampleRate/cutoff = " << m_sampleRate/cutoff << endl;
dblbuf[0] /= 2;
dblbuf[cutoff-1] /= 2;
for (int i = cutoff; i < sz; ++i) {
dblbuf[i] = 0.0;
}
cd.fft->forward(dblbuf, envelope, 0);
for (int i = 0; i <= hs; ++i) {
envelope[i] = exp(envelope[i]);
}
for (int i = 0; i <= hs; ++i) {
mag[i] /= envelope[i];
}
if (m_pitchScale > 1.0) {
// scaling up, we want a new envelope that is lower by the pitch factor
for (int target = 0; target <= hs; ++target) {
int source = lrint(target * m_pitchScale);
if (source > int(m_windowSize)) {
envelope[target] = 0.0;
} else {
envelope[target] = envelope[source];
}
}
} else {
// scaling down, we want a new envelope that is higher by the pitch factor
for (int target = hs; target > 0; ) {
--target;
int source = lrint(target * m_pitchScale);
envelope[target] = envelope[source];
}
}
for (int i = 0; i <= hs; ++i) {
mag[i] *= envelope[i];
}
cd.unchanged = false;
}
void
RubberBandStretcher::Impl::synthesiseChunk(size_t channel)
{
Profiler profiler("RubberBandStretcher::Impl::synthesiseChunk");
if ((m_options & OptionFormantPreserved) &&
(m_pitchScale != 1.0)) {
formantShiftChunk(channel);
}
ChannelData &cd = *m_channelData[channel];
cd.fft->inversePolar(cd.mag, cd.phase, cd.dblbuf);
double *const R__ dblbuf = cd.dblbuf;
float *const R__ fltbuf = cd.fltbuf;
float *const R__ accumulator = cd.accumulator;
float *const R__ windowAccumulator = cd.windowAccumulator;
int sz = m_windowSize;
int hs = m_windowSize/2;
int i;
for (size_t i = 0; i < m_windowSize/2; ++i) {
cd.fltbuf[i] = cd.dblbuf[i + m_windowSize/2];
cd.fltbuf[i + m_windowSize/2] = cd.dblbuf[i];
if (!cd.unchanged) {
cd.fft->inversePolar(cd.mag, cd.phase, cd.dblbuf);
if (cd.oversample > 1) {
int bufsiz = sz * cd.oversample;
int hbs = hs * cd.oversample;
int offset = (bufsiz - sz) / 2;
for (i = 0; i < hbs; ++i) {
double tmp = dblbuf[i];
dblbuf[i] = dblbuf[i + hbs];
dblbuf[i + hbs] = tmp;
}
for (i = 0; i < sz; ++i) {
fltbuf[i] = float(dblbuf[i + offset]);
}
} else {
for (i = 0; i < hs; ++i) {
fltbuf[i] = float(dblbuf[i + hs]);
}
for (i = 0; i < hs; ++i) {
fltbuf[i + hs] = float(dblbuf[i]);
}
}
float denom = float(sz * cd.oversample);
// our ffts produced unscaled results
for (i = 0; i < sz; ++i) {
fltbuf[i] = fltbuf[i] / denom;
}
}
// our ffts produced unscaled results
for (size_t i = 0; i < m_windowSize; ++i) {
cd.fltbuf[i] = cd.fltbuf[i] / m_windowSize;
}
m_window->cut(fltbuf);
m_window->cut(cd.fltbuf);
for (size_t i = 0; i < m_windowSize; ++i) {
cd.accumulator[i] += cd.fltbuf[i];
for (i = 0; i < sz; ++i) {
accumulator[i] += fltbuf[i];
}
cd.accumulatorFill = m_windowSize;
float fixed = m_window->getArea() * 1.5;
float fixed = m_window->getArea() * 1.5f;
for (size_t i = 0; i < m_windowSize; ++i) {
for (i = 0; i < sz; ++i) {
float val = m_window->getValue(i);
cd.windowAccumulator[i] += val * fixed;
windowAccumulator[i] += val * fixed;
}
}
void
RubberBandStretcher::Impl::writeChunk(size_t channel, size_t shiftIncrement, bool last)
{
ChannelData &cd = *m_channelData[channel];
Profiler profiler("RubberBandStretcher::Impl::writeChunk");
ChannelData &cd = *m_channelData[channel];
float *const R__ accumulator = cd.accumulator;
float *const R__ windowAccumulator = cd.windowAccumulator;
const int sz = m_windowSize;
const int si = shiftIncrement;
int i;
if (m_debugLevel > 2) {
cerr << "writeChunk(" << channel << ", " << shiftIncrement << ", " << last << ")" << endl;
}
for (unsigned int i = 0; i < shiftIncrement; ++i) {
if (cd.windowAccumulator[i] > 0.f) {
cd.accumulator[i] /= cd.windowAccumulator[i];
for (i = 0; i < si; ++i) {
if (windowAccumulator[i] > 0.f) {
accumulator[i] /= windowAccumulator[i];
}
}
@ -723,9 +962,13 @@ RubberBandStretcher::Impl::writeChunk(size_t channel, size_t shiftIncrement, boo
theoreticalOut = lrint(cd.inputSize * m_timeRatio);
}
if (m_pitchScale != 1.0 && cd.resampler) {
bool resampledAlready = resampleBeforeStretching();
size_t reqSize = int(ceil(shiftIncrement / m_pitchScale));
if (!resampledAlready &&
(m_pitchScale != 1.0 || m_options & OptionPitchHighConsistency) &&
cd.resampler) {
size_t reqSize = int(ceil(si / m_pitchScale));
if (reqSize > cd.resamplebufSize) {
// This shouldn't normally happen -- the buffer is
// supposed to be initialised with enough space in the
@ -734,15 +977,13 @@ RubberBandStretcher::Impl::writeChunk(size_t channel, size_t shiftIncrement, boo
// calculator has gone mad, or something.
cerr << "WARNING: RubberBandStretcher::Impl::writeChunk: resizing resampler buffer from "
<< cd.resamplebufSize << " to " << reqSize << endl;
cd.resamplebufSize = reqSize;
if (cd.resamplebuf) delete[] cd.resamplebuf;
cd.resamplebuf = new float[cd.resamplebufSize];
cd.setResampleBufSize(reqSize);
}
size_t outframes = cd.resampler->resample(&cd.accumulator,
&cd.resamplebuf,
shiftIncrement,
si,
1.0 / m_pitchScale,
last);
@ -751,28 +992,28 @@ RubberBandStretcher::Impl::writeChunk(size_t channel, size_t shiftIncrement, boo
outframes, cd.outCount, theoreticalOut);
} else {
writeOutput(*cd.outbuf, cd.accumulator,
shiftIncrement, cd.outCount, theoreticalOut);
writeOutput(*cd.outbuf, accumulator,
si, cd.outCount, theoreticalOut);
}
for (size_t i = 0; i < m_windowSize - shiftIncrement; ++i) {
cd.accumulator[i] = cd.accumulator[i + shiftIncrement];
for (i = 0; i < sz - si; ++i) {
accumulator[i] = accumulator[i + si];
}
for (size_t i = m_windowSize - shiftIncrement; i < m_windowSize; ++i) {
cd.accumulator[i] = 0.0f;
for (i = sz - si; i < sz; ++i) {
accumulator[i] = 0.0f;
}
for (size_t i = 0; i < m_windowSize - shiftIncrement; ++i) {
cd.windowAccumulator[i] = cd.windowAccumulator[i + shiftIncrement];
for (i = 0; i < sz - si; ++i) {
windowAccumulator[i] = windowAccumulator[i + si];
}
for (size_t i = m_windowSize - shiftIncrement; i < m_windowSize; ++i) {
cd.windowAccumulator[i] = 0.0f;
for (i = sz - si; i < sz; ++i) {
windowAccumulator[i] = 0.0f;
}
if (cd.accumulatorFill > shiftIncrement) {
cd.accumulatorFill -= shiftIncrement;
if (int(cd.accumulatorFill) > si) {
cd.accumulatorFill -= si;
} else {
cd.accumulatorFill = 0;
if (cd.draining) {
@ -787,6 +1028,8 @@ RubberBandStretcher::Impl::writeChunk(size_t channel, size_t shiftIncrement, boo
void
RubberBandStretcher::Impl::writeOutput(RingBuffer<float> &to, float *from, size_t qty, size_t &outCount, size_t theoreticalOut)
{
Profiler profiler("RubberBandStretcher::Impl::writeOutput");
// In non-RT mode, we don't want to write the first startSkip
// samples, because the first chunk is centred on the start of the
// output. In RT mode we didn't apply any pre-padding in
@ -859,6 +1102,8 @@ RubberBandStretcher::Impl::writeOutput(RingBuffer<float> &to, float *from, size_
int
RubberBandStretcher::Impl::available() const
{
Profiler profiler("RubberBandStretcher::Impl::available");
if (m_threaded) {
MutexLocker locker(&m_threadSetMutex);
if (m_channelData.empty()) return 0;
@ -906,6 +1151,8 @@ RubberBandStretcher::Impl::available() const
size_t
RubberBandStretcher::Impl::retrieve(float *const *output, size_t samples) const
{
Profiler profiler("RubberBandStretcher::Impl::retrieve");
size_t got = samples;
for (size_t c = 0; c < m_channels; ++c) {

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -16,14 +16,11 @@
#include <cstdlib>
#include <iostream>
#include <cstdlib>
#include <sys/time.h>
#include <time.h>
//#define DEBUG_THREAD 1
//#define DEBUG_MUTEX 1
//#define DEBUG_CONDITION 1
using std::cerr;
using std::endl;
using std::string;
@ -108,8 +105,11 @@ Thread::staticRun(LPVOID arg)
return 0;
}
Mutex::Mutex() :
m_locked(false)
Mutex::Mutex()
#ifndef NO_THREAD_CHECKS
:
m_lockedBy(-1)
#endif
{
m_mutex = CreateMutex(NULL, FALSE, NULL);
#ifdef DEBUG_MUTEX
@ -128,50 +128,71 @@ Mutex::~Mutex()
void
Mutex::lock()
{
if (m_locked) {
#ifndef NO_THREAD_CHECKS
DWORD tid = GetCurrentThreadId();
if (m_lockedBy == tid) {
cerr << "ERROR: Deadlock on mutex " << &m_mutex << endl;
}
#endif
#ifdef DEBUG_MUTEX
cerr << "MUTEX DEBUG: " << (void *)GetCurrentThreadId() << ": Want to lock mutex " << &m_mutex << endl;
cerr << "MUTEX DEBUG: " << (void *)tid << ": Want to lock mutex " << &m_mutex << endl;
#endif
WaitForSingleObject(m_mutex, INFINITE);
m_locked = true;
#ifndef NO_THREAD_CHECKS
m_lockedBy = tid;
#endif
#ifdef DEBUG_MUTEX
cerr << "MUTEX DEBUG: " << (void *)GetCurrentThreadId() << ": Locked mutex " << &m_mutex << endl;
cerr << "MUTEX DEBUG: " << (void *)tid << ": Locked mutex " << &m_mutex << endl;
#endif
}
void
Mutex::unlock()
{
#ifdef DEBUG_MUTEX
cerr << "MUTEX DEBUG: " << (void *)GetCurrentThreadId() << ": Unlocking mutex " << &m_mutex << endl;
#ifndef NO_THREAD_CHECKS
DWORD tid = GetCurrentThreadId();
if (m_lockedBy != tid) {
cerr << "ERROR: Mutex " << &m_mutex << " not owned by unlocking thread" << endl;
return;
}
#endif
#ifdef DEBUG_MUTEX
cerr << "MUTEX DEBUG: " << (void *)tid << ": Unlocking mutex " << &m_mutex << endl;
#endif
#ifndef NO_THREAD_CHECKS
m_lockedBy = -1;
#endif
m_locked = false;
ReleaseMutex(m_mutex);
}
bool
Mutex::trylock()
{
#ifndef NO_THREAD_CHECKS
DWORD tid = GetCurrentThreadId();
#endif
DWORD result = WaitForSingleObject(m_mutex, 0);
if (result == WAIT_TIMEOUT || result == WAIT_FAILED) {
#ifdef DEBUG_MUTEX
cerr << "MUTEX DEBUG: " << (void *)GetCurrentThreadId() << ": Mutex " << &m_mutex << " unavailable" << endl;
cerr << "MUTEX DEBUG: " << (void *)tid << ": Mutex " << &m_mutex << " unavailable" << endl;
#endif
return false;
} else {
m_locked = true;
#ifndef NO_THREAD_CHECKS
m_lockedBy = tid;
#endif
#ifdef DEBUG_MUTEX
cerr << "MUTEX DEBUG: " << (void *)GetCurrentThreadId() << ": Locked mutex " << &m_mutex << " (from trylock)" << endl;
cerr << "MUTEX DEBUG: " << (void *)tid << ": Locked mutex " << &m_mutex << " (from trylock)" << endl;
#endif
return true;
}
}
Condition::Condition(string name) :
m_name(name),
m_locked(false)
#ifdef DEBUG_CONDITION
, m_name(name)
#endif
{
m_mutex = CreateMutex(NULL, FALSE, NULL);
m_condition = CreateEvent(NULL, FALSE, FALSE, NULL);
@ -344,8 +365,12 @@ Thread::staticRun(void *arg)
return 0;
}
Mutex::Mutex() :
Mutex::Mutex()
#ifndef NO_THREAD_CHECKS
:
m_lockedBy(0),
m_locked(false)
#endif
{
pthread_mutex_init(&m_mutex, 0);
#ifdef DEBUG_MUTEX
@ -364,49 +389,75 @@ Mutex::~Mutex()
void
Mutex::lock()
{
if (m_locked) {
#ifndef NO_THREAD_CHECKS
pthread_t tid = pthread_self();
if (m_locked && m_lockedBy == tid) {
cerr << "ERROR: Deadlock on mutex " << &m_mutex << endl;
}
#endif
#ifdef DEBUG_MUTEX
cerr << "MUTEX DEBUG: " << (void *)pthread_self() << ": Want to lock mutex " << &m_mutex << endl;
cerr << "MUTEX DEBUG: " << (void *)tid << ": Want to lock mutex " << &m_mutex << endl;
#endif
pthread_mutex_lock(&m_mutex);
#ifndef NO_THREAD_CHECKS
m_lockedBy = tid;
m_locked = true;
#endif
#ifdef DEBUG_MUTEX
cerr << "MUTEX DEBUG: " << (void *)pthread_self() << ": Locked mutex " << &m_mutex << endl;
cerr << "MUTEX DEBUG: " << (void *)tid << ": Locked mutex " << &m_mutex << endl;
#endif
}
void
Mutex::unlock()
{
#ifdef DEBUG_MUTEX
cerr << "MUTEX DEBUG: " << (void *)pthread_self() << ": Unlocking mutex " << &m_mutex << endl;
#ifndef NO_THREAD_CHECKS
pthread_t tid = pthread_self();
if (!m_locked) {
cerr << "ERROR: Mutex " << &m_mutex << " not locked in unlock" << endl;
return;
} else if (m_lockedBy != tid) {
cerr << "ERROR: Mutex " << &m_mutex << " not owned by unlocking thread" << endl;
return;
}
#endif
#ifdef DEBUG_MUTEX
cerr << "MUTEX DEBUG: " << (void *)tid << ": Unlocking mutex " << &m_mutex << endl;
#endif
#ifndef NO_THREAD_CHECKS
m_locked = false;
#endif
pthread_mutex_unlock(&m_mutex);
}
bool
Mutex::trylock()
{
#ifndef NO_THREAD_CHECKS
pthread_t tid = pthread_self();
#endif
if (pthread_mutex_trylock(&m_mutex)) {
#ifdef DEBUG_MUTEX
cerr << "MUTEX DEBUG: " << (void *)pthread_self() << ": Mutex " << &m_mutex << " unavailable" << endl;
cerr << "MUTEX DEBUG: " << (void *)tid << ": Mutex " << &m_mutex << " unavailable" << endl;
#endif
return false;
} else {
#ifndef NO_THREAD_CHECKS
m_lockedBy = tid;
m_locked = true;
#endif
#ifdef DEBUG_MUTEX
cerr << "MUTEX DEBUG: " << (void *)pthread_self() << ": Locked mutex " << &m_mutex << " (from trylock)" << endl;
cerr << "MUTEX DEBUG: " << (void *)tid << ": Locked mutex " << &m_mutex << " (from trylock)" << endl;
#endif
return true;
}
}
Condition::Condition(string name) :
m_locked(false),
m_name(name)
m_locked(false)
#ifdef DEBUG_CONDITION
, m_name(name)
#endif
{
pthread_mutex_init(&m_mutex, 0);
pthread_cond_init(&m_condition, 0);

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -23,6 +23,10 @@
#include <string>
//#define DEBUG_THREAD 1
//#define DEBUG_MUTEX 1
//#define DEBUG_CONDITION 1
namespace RubberBand
{
@ -73,11 +77,16 @@ public:
private:
#ifdef _WIN32
HANDLE m_mutex;
bool m_locked;
#ifndef NO_THREAD_CHECKS
DWORD m_lockedBy;
#endif
#else
pthread_mutex_t m_mutex;
#ifndef NO_THREAD_CHECKS
pthread_t m_lockedBy;
bool m_locked;
#endif
#endif
};
class MutexLocker
@ -113,15 +122,17 @@ public:
void signal();
private:
#ifdef _WIN32
HANDLE m_mutex;
bool m_locked;
HANDLE m_condition;
std::string m_name;
bool m_locked;
#else
pthread_mutex_t m_mutex;
bool m_locked;
pthread_cond_t m_condition;
bool m_locked;
#endif
#ifdef DEBUG_CONDITION
std::string m_name;
#endif
};

View file

@ -0,0 +1,17 @@
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "Window.h"

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -18,8 +18,11 @@
#include <cmath>
#include <cstdlib>
#include <iostream>
#include <cstdlib>
#include <map>
#include "sysutils.h"
namespace RubberBand {
enum WindowType {
@ -41,7 +44,7 @@ public:
/**
* Construct a windower of the given type.
*/
Window(WindowType type, size_t size) : m_type(type), m_size(size) { encache(); }
Window(WindowType type, int size) : m_type(type), m_size(size) { encache(); }
Window(const Window &w) : m_type(w.m_type), m_size(w.m_size) { encache(); }
Window &operator=(const Window &w) {
if (&w == this) return *this;
@ -52,21 +55,34 @@ public:
}
virtual ~Window() { delete[] m_cache; }
void cut(T *src) const { cut(src, src); }
void cut(T *src, T *dst) const {
for (size_t i = 0; i < m_size; ++i) dst[i] = src[i] * m_cache[i];
void cut(T *R__ src) const
{
const int sz = m_size;
for (int i = 0; i < sz; ++i) {
src[i] *= m_cache[i];
}
}
void cut(T *R__ src, T *dst) const {
const int sz = m_size;
for (int i = 0; i < sz; ++i) {
dst[i] = src[i];
}
for (int i = 0; i < sz; ++i) {
dst[i] *= m_cache[i];
}
}
T getArea() { return m_area; }
T getValue(size_t i) { return m_cache[i]; }
T getValue(int i) { return m_cache[i]; }
WindowType getType() const { return m_type; }
size_t getSize() const { return m_size; }
int getSize() const { return m_size; }
protected:
WindowType m_type;
size_t m_size;
T *m_cache;
int m_size;
T *R__ m_cache;
T m_area;
void encache();

View file

@ -0,0 +1,73 @@
/*
** Copyright (C) 2001 Erik de Castro Lopo <erikd AT mega-nerd DOT com>
**
** Permission to use, copy, modify, distribute, and sell this file for any
** purpose is hereby granted without fee, provided that the above copyright
** and this permission notice appear in all copies. No representations are
** made about the suitability of this software for any purpose. It is
** provided "as is" without express or implied warranty.
*/
/* Version 1.1 */
/*============================================================================
** On Intel Pentium processors (especially PIII and probably P4), converting
** from float to int is very slow. To meet the C specs, the code produced by
** most C compilers targeting Pentium needs to change the FPU rounding mode
** before the float to int conversion is performed.
**
** Changing the FPU rounding mode causes the FPU pipeline to be flushed. It
** is this flushing of the pipeline which is so slow.
**
** Fortunately the ISO C99 specifications define the functions lrint, lrintf,
** llrint and llrintf which fix this problem as a side effect.
**
** On Unix-like systems, the configure process should have detected the
** presence of these functions. If they weren't found we have to replace them
** here with a standard C cast.
*/
/*
** The C99 prototypes for lrint and lrintf are as follows:
**
** long int lrintf (float x) ;
** long int lrint (double x) ;
*/
#if (defined (WIN32) || defined (_WIN32))
#include <math.h>
/* Win32 doesn't seem to have these functions.
** Therefore implement inline versions of these functions here.
*/
__inline long int
lrint (double flt)
{ int intgr;
_asm
{ fld flt
fistp intgr
} ;
return intgr ;
}
__inline long int
lrintf (float flt)
{ int intgr;
_asm
{ fld flt
fistp intgr
} ;
return intgr ;
}
#endif

View file

@ -0,0 +1,112 @@
/*
* Copyright (c) 1987, 1993, 1994
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int opterr = 1, /* if error message should be printed */
optind = 1, /* index into parent argv vector */
optopt, /* character checked for validity */
optreset; /* reset getopt */
char *optarg; /* argument associated with option */
#define BADCH (int)'?'
#define BADARG (int)':'
#define EMSG ""
/*
* getopt --
* Parse argc/argv argument vector.
*/
int
getopt(nargc, nargv, ostr)
int nargc;
char * const *nargv;
const char *ostr;
{
static char *place = EMSG; /* option letter processing */
char *oli; /* option letter list index */
if (optreset || !*place) { /* update scanning pointer */
optreset = 0;
if (optind >= nargc || *(place = nargv[optind]) != '-') {
place = EMSG;
return (-1);
}
if (place[1] && *++place == '-') { /* found "--" */
++optind;
place = EMSG;
return (-1);
}
} /* option letter okay? */
if ((optopt = (int)*place++) == (int)':' ||
!(oli = strchr(ostr, optopt))) {
/*
* if the user didn't specify '-' as an option,
* assume it means -1.
*/
if (optopt == (int)'-')
return (-1);
if (!*place)
++optind;
if (opterr && *ostr != ':' && optopt != BADCH)
(void)fprintf(stderr, "%s: illegal option -- %c\n",
"progname", optopt);
return (BADCH);
}
if (*++oli != ':') { /* don't need argument */
optarg = NULL;
if (!*place)
++optind;
}
else { /* need an argument */
if (*place) /* no white space */
optarg = place;
else if (nargc <= ++optind) { /* no arg */
place = EMSG;
if (*ostr == ':')
return (BADARG);
if (opterr)
(void)fprintf(stderr,
"%s: option requires an argument -- %c\n",
"progname", optopt);
return (BADCH);
}
else /* white space */
optarg = nargv[optind];
place = EMSG;
++optind;
}
return (optopt); /* dump back option letter */
}

View file

@ -0,0 +1,110 @@
/* $NetBSD: getopt.h,v 1.4 2000/07/07 10:43:54 ad Exp $ */
/* $FreeBSD: src/include/getopt.h,v 1.1 2002/09/29 04:14:30 eric Exp $ */
/*-
* Copyright (c) 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Dieter Baron and Thomas Klausner.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _GETOPT_H_
#define _GETOPT_H_
#ifdef _WIN32
/* from <sys/cdefs.h> */
# ifdef __cplusplus
# define __BEGIN_DECLS extern "C" {
# define __END_DECLS }
# else
# define __BEGIN_DECLS
# define __END_DECLS
# endif
# define __P(args) args
#endif
/*#ifndef _WIN32
#include <sys/cdefs.h>
#include <unistd.h>
#endif*/
#ifdef _WIN32
# if !defined(GETOPT_API)
# define GETOPT_API __declspec(dllimport)
# endif
#endif
/*
* Gnu like getopt_long() and BSD4.4 getsubopt()/optreset extensions
*/
#if !defined(_POSIX_SOURCE) && !defined(_XOPEN_SOURCE)
#define no_argument 0
#define required_argument 1
#define optional_argument 2
struct option {
/* name of long option */
const char *name;
/*
* one of no_argument, required_argument, and optional_argument:
* whether option takes an argument
*/
int has_arg;
/* if not NULL, set *flag to val when option found */
int *flag;
/* if flag not NULL, value to set *flag to; else return value */
int val;
};
__BEGIN_DECLS
GETOPT_API int getopt_long __P((int, char * const *, const char *,
const struct option *, int *));
__END_DECLS
#endif
#ifdef _WIN32
/* These are global getopt variables */
__BEGIN_DECLS
GETOPT_API extern int opterr, /* if error message should be printed */
optind, /* index into parent argv vector */
optopt, /* character checked for validity */
optreset; /* reset getopt */
GETOPT_API extern char* optarg; /* argument associated with option */
/* Original getopt */
GETOPT_API int getopt __P((int, char * const *, const char *));
__END_DECLS
#endif
#endif /* !_GETOPT_H_ */

View file

@ -0,0 +1,547 @@
/* $NetBSD: getopt_long.c,v 1.15 2002/01/31 22:43:40 tv Exp $ */
/* $FreeBSD: src/lib/libc/stdlib/getopt_long.c,v 1.2 2002/10/16 22:18:42 alfred Exp $ */
/*-
* Copyright (c) 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Dieter Baron and Thomas Klausner.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdlib.h>
#include <string.h>
#ifdef _WIN32
/* Windows needs warnx(). We change the definition though:
* 1. (another) global is defined, opterrmsg, which holds the error message
* 2. errors are always printed out on stderr w/o the program name
* Note that opterrmsg always gets set no matter what opterr is set to. The
* error message will not be printed if opterr is 0 as usual.
*/
#include "getopt.h"
#include <stdio.h>
#include <stdarg.h>
GETOPT_API extern char opterrmsg[128];
char opterrmsg[128]; /* last error message is stored here */
static void warnx(int print_error, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
if (fmt != NULL)
_vsnprintf(opterrmsg, 128, fmt, ap);
else
opterrmsg[0]='\0';
va_end(ap);
if (print_error) {
fprintf(stderr, opterrmsg);
fprintf(stderr, "\n");
}
}
#endif /*_WIN32*/
/* not part of the original file */
#ifndef _DIAGASSERT
#define _DIAGASSERT(X)
#endif
#if HAVE_CONFIG_H && !HAVE_GETOPT_LONG && !HAVE_DECL_OPTIND
#define REPLACE_GETOPT
#endif
#ifdef REPLACE_GETOPT
#ifdef __weak_alias
__weak_alias(getopt,_getopt)
#endif
int opterr = 1; /* if error message should be printed */
int optind = 1; /* index into parent argv vector */
int optopt = '?'; /* character checked for validity */
int optreset; /* reset getopt */
char *optarg; /* argument associated with option */
#elif HAVE_CONFIG_H && !HAVE_DECL_OPTRESET
static int optreset;
#endif
#ifdef __weak_alias
__weak_alias(getopt_long,_getopt_long)
#endif
#if !HAVE_GETOPT_LONG
#define IGNORE_FIRST (*options == '-' || *options == '+')
#define PRINT_ERROR ((opterr) && ((*options != ':') \
|| (IGNORE_FIRST && options[1] != ':')))
#define IS_POSIXLY_CORRECT (getenv("POSIXLY_CORRECT") != NULL)
#define PERMUTE (!IS_POSIXLY_CORRECT && !IGNORE_FIRST)
/* XXX: GNU ignores PC if *options == '-' */
#define IN_ORDER (!IS_POSIXLY_CORRECT && *options == '-')
/* return values */
#define BADCH (int)'?'
#define BADARG ((IGNORE_FIRST && options[1] == ':') \
|| (*options == ':') ? (int)':' : (int)'?')
#define INORDER (int)1
#define EMSG ""
static int getopt_internal(int, char * const *, const char *);
static int gcd(int, int);
static void permute_args(int, int, int, char * const *);
static char *place = EMSG; /* option letter processing */
/* XXX: set optreset to 1 rather than these two */
static int nonopt_start = -1; /* first non option argument (for permute) */
static int nonopt_end = -1; /* first option after non options (for permute) */
/* Error messages */
static const char recargchar[] = "option requires an argument -- %c";
static const char recargstring[] = "option requires an argument -- %s";
static const char ambig[] = "ambiguous option -- %.*s";
static const char noarg[] = "option doesn't take an argument -- %.*s";
static const char illoptchar[] = "unknown option -- %c";
static const char illoptstring[] = "unknown option -- %s";
/*
* Compute the greatest common divisor of a and b.
*/
static int
gcd(a, b)
int a;
int b;
{
int c;
c = a % b;
while (c != 0) {
a = b;
b = c;
c = a % b;
}
return b;
}
/*
* Exchange the block from nonopt_start to nonopt_end with the block
* from nonopt_end to opt_end (keeping the same order of arguments
* in each block).
*/
static void
permute_args(panonopt_start, panonopt_end, opt_end, nargv)
int panonopt_start;
int panonopt_end;
int opt_end;
char * const *nargv;
{
int cstart, cyclelen, i, j, ncycle, nnonopts, nopts, pos;
char *swap;
_DIAGASSERT(nargv != NULL);
/*
* compute lengths of blocks and number and size of cycles
*/
nnonopts = panonopt_end - panonopt_start;
nopts = opt_end - panonopt_end;
ncycle = gcd(nnonopts, nopts);
cyclelen = (opt_end - panonopt_start) / ncycle;
for (i = 0; i < ncycle; i++) {
cstart = panonopt_end+i;
pos = cstart;
for (j = 0; j < cyclelen; j++) {
if (pos >= panonopt_end)
pos -= nnonopts;
else
pos += nopts;
swap = nargv[pos];
/* LINTED const cast */
((char **) nargv)[pos] = nargv[cstart];
/* LINTED const cast */
((char **)nargv)[cstart] = swap;
}
}
}
/*
* getopt_internal --
* Parse argc/argv argument vector. Called by user level routines.
* Returns -2 if -- is found (can be long option or end of options marker).
*/
static int
getopt_internal(nargc, nargv, options)
int nargc;
char * const *nargv;
const char *options;
{
char *oli; /* option letter list index */
int optchar;
_DIAGASSERT(nargv != NULL);
_DIAGASSERT(options != NULL);
optarg = NULL;
/*
* XXX Some programs (like rsyncd) expect to be able to
* XXX re-initialize optind to 0 and have getopt_long(3)
* XXX properly function again. Work around this braindamage.
*/
if (optind == 0)
optind = 1;
if (optreset)
nonopt_start = nonopt_end = -1;
start:
if (optreset || !*place) { /* update scanning pointer */
optreset = 0;
if (optind >= nargc) { /* end of argument vector */
place = EMSG;
if (nonopt_end != -1) {
/* do permutation, if we have to */
permute_args(nonopt_start, nonopt_end,
optind, nargv);
optind -= nonopt_end - nonopt_start;
}
else if (nonopt_start != -1) {
/*
* If we skipped non-options, set optind
* to the first of them.
*/
optind = nonopt_start;
}
nonopt_start = nonopt_end = -1;
return -1;
}
if ((*(place = nargv[optind]) != '-')
|| (place[1] == '\0')) { /* found non-option */
place = EMSG;
if (IN_ORDER) {
/*
* GNU extension:
* return non-option as argument to option 1
*/
optarg = nargv[optind++];
return INORDER;
}
if (!PERMUTE) {
/*
* if no permutation wanted, stop parsing
* at first non-option
*/
return -1;
}
/* do permutation */
if (nonopt_start == -1)
nonopt_start = optind;
else if (nonopt_end != -1) {
permute_args(nonopt_start, nonopt_end,
optind, nargv);
nonopt_start = optind -
(nonopt_end - nonopt_start);
nonopt_end = -1;
}
optind++;
/* process next argument */
goto start;
}
if (nonopt_start != -1 && nonopt_end == -1)
nonopt_end = optind;
if (place[1] && *++place == '-') { /* found "--" */
place++;
return -2;
}
}
if ((optchar = (int)*place++) == (int)':' ||
(oli = strchr(options + (IGNORE_FIRST ? 1 : 0), optchar)) == NULL) {
/* option letter unknown or ':' */
if (!*place)
++optind;
#ifndef _WIN32
if (PRINT_ERROR)
warnx(illoptchar, optchar);
#else
warnx(PRINT_ERROR, illoptchar, optchar);
#endif
optopt = optchar;
return BADCH;
}
if (optchar == 'W' && oli[1] == ';') { /* -W long-option */
/* XXX: what if no long options provided (called by getopt)? */
if (*place)
return -2;
if (++optind >= nargc) { /* no arg */
place = EMSG;
#ifndef _WIN32
if (PRINT_ERROR)
warnx(recargchar, optchar);
#else
warnx(PRINT_ERROR, recargchar, optchar);
#endif
optopt = optchar;
return BADARG;
} else /* white space */
place = nargv[optind];
/*
* Handle -W arg the same as --arg (which causes getopt to
* stop parsing).
*/
return -2;
}
if (*++oli != ':') { /* doesn't take argument */
if (!*place)
++optind;
} else { /* takes (optional) argument */
optarg = NULL;
if (*place) /* no white space */
optarg = place;
/* XXX: disable test for :: if PC? (GNU doesn't) */
else if (oli[1] != ':') { /* arg not optional */
if (++optind >= nargc) { /* no arg */
place = EMSG;
#ifndef _WIN32
if (PRINT_ERROR)
warnx(recargchar, optchar);
#else
warnx(PRINT_ERROR, recargchar, optchar);
#endif
optopt = optchar;
return BADARG;
} else
optarg = nargv[optind];
}
place = EMSG;
++optind;
}
/* dump back option letter */
return optchar;
}
#ifdef REPLACE_GETOPT
/*
* getopt --
* Parse argc/argv argument vector.
*
* [eventually this will replace the real getopt]
*/
int
getopt(nargc, nargv, options)
int nargc;
char * const *nargv;
const char *options;
{
int retval;
_DIAGASSERT(nargv != NULL);
_DIAGASSERT(options != NULL);
if ((retval = getopt_internal(nargc, nargv, options)) == -2) {
++optind;
/*
* We found an option (--), so if we skipped non-options,
* we have to permute.
*/
if (nonopt_end != -1) {
permute_args(nonopt_start, nonopt_end, optind,
nargv);
optind -= nonopt_end - nonopt_start;
}
nonopt_start = nonopt_end = -1;
retval = -1;
}
return retval;
}
#endif
/*
* getopt_long --
* Parse argc/argv argument vector.
*/
int
getopt_long(nargc, nargv, options, long_options, idx)
int nargc;
char * const *nargv;
const char *options;
const struct option *long_options;
int *idx;
{
int retval;
_DIAGASSERT(nargv != NULL);
_DIAGASSERT(options != NULL);
_DIAGASSERT(long_options != NULL);
/* idx may be NULL */
if ((retval = getopt_internal(nargc, nargv, options)) == -2) {
char *current_argv, *has_equal;
size_t current_argv_len;
int i, match;
current_argv = place;
match = -1;
optind++;
place = EMSG;
if (*current_argv == '\0') { /* found "--" */
/*
* We found an option (--), so if we skipped
* non-options, we have to permute.
*/
if (nonopt_end != -1) {
permute_args(nonopt_start, nonopt_end,
optind, nargv);
optind -= nonopt_end - nonopt_start;
}
nonopt_start = nonopt_end = -1;
return -1;
}
if ((has_equal = strchr(current_argv, '=')) != NULL) {
/* argument found (--option=arg) */
current_argv_len = has_equal - current_argv;
has_equal++;
} else
current_argv_len = strlen(current_argv);
for (i = 0; long_options[i].name; i++) {
/* find matching long option */
if (strncmp(current_argv, long_options[i].name,
current_argv_len))
continue;
if (strlen(long_options[i].name) ==
(unsigned)current_argv_len) {
/* exact match */
match = i;
break;
}
if (match == -1) /* partial match */
match = i;
else {
/* ambiguous abbreviation */
#ifndef _WIN32
if (PRINT_ERROR)
warnx(ambig, (int)current_argv_len,
current_argv);
#else
warnx(PRINT_ERROR, ambig, (int)current_argv_len,
current_argv);
#endif
optopt = 0;
return BADCH;
}
}
if (match != -1) { /* option found */
if (long_options[match].has_arg == no_argument
&& has_equal) {
#ifndef _WIN32
if (PRINT_ERROR)
warnx(noarg, (int)current_argv_len,
current_argv);
#else
warnx(PRINT_ERROR, noarg, (int)current_argv_len,
current_argv);
#endif
/*
* XXX: GNU sets optopt to val regardless of
* flag
*/
if (long_options[match].flag == NULL)
optopt = long_options[match].val;
else
optopt = 0;
return BADARG;
}
if (long_options[match].has_arg == required_argument ||
long_options[match].has_arg == optional_argument) {
if (has_equal)
optarg = has_equal;
else if (long_options[match].has_arg ==
required_argument) {
/*
* optional argument doesn't use
* next nargv
*/
optarg = nargv[optind++];
}
}
if ((long_options[match].has_arg == required_argument)
&& (optarg == NULL)) {
/*
* Missing argument; leading ':'
* indicates no error should be generated
*/
#ifndef _WIN32
if (PRINT_ERROR)
warnx(recargstring, current_argv);
#else
warnx(PRINT_ERROR, recargstring, current_argv);
#endif
/*
* XXX: GNU sets optopt to val regardless
* of flag
*/
if (long_options[match].flag == NULL)
optopt = long_options[match].val;
else
optopt = 0;
--optind;
return BADARG;
}
} else { /* unknown option */
#ifndef _WIN32
if (PRINT_ERROR)
warnx(illoptstring, current_argv);
#else
warnx(PRINT_ERROR, illoptstring, current_argv);
#endif
optopt = 0;
return BADCH;
}
if (long_options[match].flag) {
*long_options[match].flag = long_options[match].val;
retval = 0;
} else
retval = long_options[match].val;
if (idx)
*idx = match;
}
return retval;
}
#endif /* !GETOPT_LONG */

View file

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -21,14 +21,21 @@
using namespace RubberBand;
using std::cout;
using std::cerr;
using std::endl;
using std::min;
const char *const
RubberBandPitchShifter::portNamesMono[PortCountMono] =
{
"_latency",
"latency",
"Cents",
"Semitones",
"Octaves",
"Crispness",
"Formant Preserving",
"Faster",
"Input",
"Output"
};
@ -36,11 +43,13 @@ RubberBandPitchShifter::portNamesMono[PortCountMono] =
const char *const
RubberBandPitchShifter::portNamesStereo[PortCountStereo] =
{
"_latency",
"latency",
"Cents",
"Semitones",
"Octaves",
"Crispness",
"Formant Preserving",
"Faster",
"Input L",
"Output L",
"Input R",
@ -55,6 +64,8 @@ RubberBandPitchShifter::portsMono[PortCountMono] =
LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL,
LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL,
LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL,
LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL,
LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL,
LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO,
LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO
};
@ -67,6 +78,8 @@ RubberBandPitchShifter::portsStereo[PortCountStereo] =
LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL,
LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL,
LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL,
LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL,
LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL,
LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO,
LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO,
LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO,
@ -76,26 +89,36 @@ RubberBandPitchShifter::portsStereo[PortCountStereo] =
const LADSPA_PortRangeHint
RubberBandPitchShifter::hintsMono[PortCountMono] =
{
{ 0, 0, 0 },
{ LADSPA_HINT_DEFAULT_0 |
{ 0, 0, 0 }, // latency
{ LADSPA_HINT_DEFAULT_0 | // cents
LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE,
-100.0, 100.0 },
{ LADSPA_HINT_DEFAULT_0 |
{ LADSPA_HINT_DEFAULT_0 | // semitones
LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_INTEGER,
-12.0, 12.0 },
{ LADSPA_HINT_DEFAULT_0 |
{ LADSPA_HINT_DEFAULT_0 | // octaves
LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_INTEGER,
-4.0, 4.0 },
{ LADSPA_HINT_DEFAULT_MAXIMUM |
-3.0, 3.0 },
{ LADSPA_HINT_DEFAULT_MAXIMUM | // crispness
LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_INTEGER,
0.0, 3.0 },
{ LADSPA_HINT_DEFAULT_0 | // formant preserving
LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_TOGGLED,
0.0, 1.0 },
{ LADSPA_HINT_DEFAULT_0 | // fast
LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_TOGGLED,
0.0, 1.0 },
{ 0, 0, 0 },
{ 0, 0, 0 }
};
@ -103,26 +126,36 @@ RubberBandPitchShifter::hintsMono[PortCountMono] =
const LADSPA_PortRangeHint
RubberBandPitchShifter::hintsStereo[PortCountStereo] =
{
{ 0, 0, 0 },
{ LADSPA_HINT_DEFAULT_0 |
{ 0, 0, 0 }, // latency
{ LADSPA_HINT_DEFAULT_0 | // cents
LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE,
-100.0, 100.0 },
{ LADSPA_HINT_DEFAULT_0 |
{ LADSPA_HINT_DEFAULT_0 | // semitones
LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_INTEGER,
-12.0, 12.0 },
{ LADSPA_HINT_DEFAULT_0 |
{ LADSPA_HINT_DEFAULT_0 | // octaves
LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_INTEGER,
-4.0, 4.0 },
{ LADSPA_HINT_DEFAULT_MAXIMUM |
-3.0, 3.0 },
{ LADSPA_HINT_DEFAULT_MAXIMUM | // crispness
LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_INTEGER,
0.0, 3.0 },
{ LADSPA_HINT_DEFAULT_0 | // formant preserving
LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_TOGGLED,
0.0, 1.0 },
{ LADSPA_HINT_DEFAULT_0 | // fast
LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_TOGGLED,
0.0, 1.0 },
{ 0, 0, 0 },
{ 0, 0, 0 },
{ 0, 0, 0 },
@ -139,7 +172,7 @@ RubberBandPitchShifter::ladspaDescriptorMono =
"rubberband-pitchshifter-mono", // Label
properties,
"Rubber Band Mono Pitch Shifter", // Name
"Chris Cannam",
"Breakfast Quay",
"GPL",
PortCountMono,
portsMono,
@ -163,7 +196,7 @@ RubberBandPitchShifter::ladspaDescriptorStereo =
"rubberband-pitchshifter-stereo", // Label
properties,
"Rubber Band Stereo Pitch Shifter", // Name
"Chris Cannam",
"Breakfast Quay",
"GPL",
PortCountStereo,
portsStereo,
@ -194,25 +227,37 @@ RubberBandPitchShifter::RubberBandPitchShifter(int sampleRate, size_t channels)
m_semitones(0),
m_octaves(0),
m_crispness(0),
m_formant(0),
m_fast(0),
m_ratio(1.0),
m_prevRatio(1.0),
m_currentCrispness(-1),
m_extraLatency(8192), //!!! this should be at least the maximum possible displacement from linear at input rates, divided by the pitch scale factor. It could be very large
m_currentFormant(false),
m_currentFast(false),
m_blockSize(1024),
m_reserve(1024),
m_minfill(0),
m_stretcher(new RubberBandStretcher
(sampleRate, channels,
RubberBandStretcher::OptionProcessRealTime)),
RubberBandStretcher::OptionProcessRealTime |
RubberBandStretcher::OptionPitchHighConsistency)),
m_sampleRate(sampleRate),
m_channels(channels)
{
for (size_t c = 0; c < m_channels; ++c) {
m_input[c] = 0;
m_output[c] = 0;
//!!! size must be at least max process size plus m_extraLatency:
m_outputBuffer[c] = new RingBuffer<float>(8092); //!!!
m_outputBuffer[c]->zero(m_extraLatency);
//!!! size must be at least max process size:
m_scratch[c] = new float[16384];//!!!
int bufsize = m_blockSize + m_reserve + 8192;
m_outputBuffer[c] = new RingBuffer<float>(bufsize);
m_scratch[c] = new float[bufsize];
for (int i = 0; i < bufsize; ++i) m_scratch[c][i] = 0.f;
}
activateImpl();
}
RubberBandPitchShifter::~RubberBandPitchShifter()
@ -247,23 +292,59 @@ RubberBandPitchShifter::connectPort(LADSPA_Handle handle,
&shifter->m_semitones,
&shifter->m_octaves,
&shifter->m_crispness,
&shifter->m_input[0],
&shifter->m_formant,
&shifter->m_fast,
&shifter->m_input[0],
&shifter->m_output[0],
&shifter->m_input[1],
&shifter->m_output[1]
};
if (shifter->m_channels == 1) {
if (port >= PortCountMono) return;
} else {
if (port >= PortCountStereo) return;
}
*ports[port] = (float *)location;
if (shifter->m_latency) {
*(shifter->m_latency) =
float(shifter->m_stretcher->getLatency() + shifter->m_reserve);
}
}
void
RubberBandPitchShifter::activate(LADSPA_Handle handle)
{
RubberBandPitchShifter *shifter = (RubberBandPitchShifter *)handle;
shifter->updateRatio();
shifter->m_prevRatio = shifter->m_ratio;
shifter->m_stretcher->reset();
shifter->m_stretcher->setPitchScale(shifter->m_ratio);
shifter->activateImpl();
}
void
RubberBandPitchShifter::activateImpl()
{
updateRatio();
m_prevRatio = m_ratio;
m_stretcher->reset();
m_stretcher->setPitchScale(m_ratio);
for (size_t c = 0; c < m_channels; ++c) {
m_outputBuffer[c]->reset();
m_outputBuffer[c]->zero(m_reserve);
}
m_minfill = 0;
// prime stretcher
// for (int i = 0; i < 8; ++i) {
// int reqd = m_stretcher->getSamplesRequired();
// m_stretcher->process(m_scratch, reqd, false);
// int avail = m_stretcher->available();
// if (avail > 0) {
// m_stretcher->retrieve(m_scratch, avail);
// }
// }
}
void
@ -276,9 +357,9 @@ RubberBandPitchShifter::run(LADSPA_Handle handle, unsigned long samples)
void
RubberBandPitchShifter::updateRatio()
{
double oct = *m_octaves;
oct += *m_semitones / 12;
oct += *m_cents / 1200;
double oct = (m_octaves ? *m_octaves : 0.0);
oct += (m_semitones ? *m_semitones : 0.0) / 12;
oct += (m_cents ? *m_cents : 0.0) / 1200;
m_ratio = pow(2.0, oct);
}
@ -298,15 +379,15 @@ RubberBandPitchShifter::updateCrispness()
s->setTransientsOption(RubberBandStretcher::OptionTransientsSmooth);
break;
case 1:
s->setPhaseOption(RubberBandStretcher::OptionPhaseAdaptive);
s->setPhaseOption(RubberBandStretcher::OptionPhaseLaminar);
s->setTransientsOption(RubberBandStretcher::OptionTransientsSmooth);
break;
case 2:
s->setPhaseOption(RubberBandStretcher::OptionPhaseAdaptive);
s->setPhaseOption(RubberBandStretcher::OptionPhaseLaminar);
s->setTransientsOption(RubberBandStretcher::OptionTransientsMixed);
break;
case 3:
s->setPhaseOption(RubberBandStretcher::OptionPhaseAdaptive);
s->setPhaseOption(RubberBandStretcher::OptionPhaseLaminar);
s->setTransientsOption(RubberBandStretcher::OptionTransientsCrisp);
break;
}
@ -314,10 +395,66 @@ RubberBandPitchShifter::updateCrispness()
m_currentCrispness = c;
}
void
RubberBandPitchShifter::updateFormant()
{
if (!m_formant) return;
bool f = (*m_formant > 0.5f);
if (f == m_currentFormant) return;
RubberBandStretcher *s = m_stretcher;
s->setFormantOption(f ?
RubberBandStretcher::OptionFormantPreserved :
RubberBandStretcher::OptionFormantShifted);
m_currentFormant = f;
}
void
RubberBandPitchShifter::updateFast()
{
if (!m_fast) return;
bool f = (*m_fast > 0.5f);
if (f == m_currentFast) return;
RubberBandStretcher *s = m_stretcher;
s->setPitchOption(f ?
RubberBandStretcher::OptionPitchHighSpeed :
RubberBandStretcher::OptionPitchHighConsistency);
m_currentFast = f;
}
void
RubberBandPitchShifter::runImpl(unsigned long insamples)
{
// std::cerr << "RubberBandPitchShifter::runImpl(" << insamples << ")" << std::endl;
unsigned long offset = 0;
// We have to break up the input into chunks like this because
// insamples could be arbitrarily large and our output buffer is
// of limited size
while (offset < insamples) {
unsigned long block = (unsigned long)m_blockSize;
if (block + offset > insamples) block = insamples - offset;
runImpl(block, offset);
offset += block;
}
}
void
RubberBandPitchShifter::runImpl(unsigned long insamples, unsigned long offset)
{
// cerr << "RubberBandPitchShifter::runImpl(" << insamples << ")" << endl;
// static int incount = 0, outcount = 0;
updateRatio();
if (m_ratio != m_prevRatio) {
@ -326,71 +463,80 @@ RubberBandPitchShifter::runImpl(unsigned long insamples)
}
if (m_latency) {
*m_latency = m_stretcher->getLatency() + m_extraLatency;
// std::cerr << "latency = " << *m_latency << std::endl;
*m_latency = float(m_stretcher->getLatency() + m_reserve);
// cerr << "latency = " << *m_latency << endl;
}
updateCrispness();
updateFormant();
updateFast();
int samples = insamples;
const int samples = insamples;
int processed = 0;
size_t outTotal = 0;
float *ptrs[2];
// We have to break up the input into chunks like this because
// insamples could be arbitrarily large
int rs = m_outputBuffer[0]->getReadSpace();
if (rs < int(m_minfill)) {
// cerr << "temporary expansion (have " << rs << ", want " << m_reserve << ")" << endl;
m_stretcher->setTimeRatio(1.1); // fill up temporarily
} else if (rs > 8192) {
// cerr << "temporary reduction (have " << rs << ", want " << m_reserve << ")" << endl;
m_stretcher->setTimeRatio(0.9); // reduce temporarily
} else {
m_stretcher->setTimeRatio(1.0);
}
while (processed < samples) {
//!!! size_t:
// never feed more than the minimum necessary number of
// samples at a time; ensures nothing will overflow internally
// and we don't need to call setMaxProcessSize
int toCauseProcessing = m_stretcher->getSamplesRequired();
// std::cout << "to-cause: " << toCauseProcessing << ", remain = " << samples - processed;
int inchunk = std::min(samples - processed, toCauseProcessing);
int inchunk = min(samples - processed, toCauseProcessing);
for (size_t c = 0; c < m_channels; ++c) {
ptrs[c] = &(m_input[c][processed]);
ptrs[c] = &(m_input[c][offset + processed]);
}
m_stretcher->process(ptrs, inchunk, false);
processed += inchunk;
int avail = m_stretcher->available();
int writable = m_outputBuffer[0]->getWriteSpace();
int outchunk = std::min(avail, writable);
int outchunk = min(avail, writable);
size_t actual = m_stretcher->retrieve(m_scratch, outchunk);
outTotal += actual;
// std::cout << ", avail: " << avail << ", outchunk = " << outchunk;
// if (actual != outchunk) std::cout << " (" << actual << ")";
// std::cout << std::endl;
// incount += inchunk;
// outcount += actual;
// cout << "avail: " << avail << ", outchunk = " << outchunk;
// if (actual != outchunk) cout << " (" << actual << ")";
// cout << endl;
outchunk = actual;
for (size_t c = 0; c < m_channels; ++c) {
if (int(m_outputBuffer[c]->getWriteSpace()) < outchunk) {
std::cerr << "RubberBandPitchShifter::runImpl: buffer overrun: chunk = " << outchunk << ", space = " << m_outputBuffer[c]->getWriteSpace() << std::endl;
cerr << "RubberBandPitchShifter::runImpl: buffer overrun: chunk = " << outchunk << ", space = " << m_outputBuffer[c]->getWriteSpace() << endl;
}
m_outputBuffer[c]->write(m_scratch[c], outchunk);
}
}
// std::cout << "processed = " << processed << " in, " << outTotal << " out" << ", fill = " << m_outputBuffer[0]->getReadSpace() << " of " << m_outputBuffer[0]->getSize() << std::endl;
for (size_t c = 0; c < m_channels; ++c) {
int avail = m_outputBuffer[c]->getReadSpace();
// std::cout << "avail: " << avail << std::endl;
if (avail < samples && c == 0) {
std::cerr << "RubberBandPitchShifter::runImpl: buffer underrun: required = " << samples << ", available = " << avail << std::endl;
int toRead = m_outputBuffer[c]->getReadSpace();
if (toRead < samples && c == 0) {
cerr << "RubberBandPitchShifter::runImpl: buffer underrun: required = " << samples << ", available = " << toRead << endl;
}
int chunk = std::min(avail, samples);
// std::cout << "out chunk: " << chunk << std::endl;
m_outputBuffer[c]->read(m_output[c], chunk);
int chunk = min(toRead, samples);
m_outputBuffer[c]->read(&(m_output[c][offset]), chunk);
}
static int minr = -1;
int avail = m_outputBuffer[0]->getReadSpace();
if (minr == -1 || (avail >= 0 && avail < minr)) {
std::cerr << "RubberBandPitchShifter::runImpl: new min remaining " << avail << " from " << minr << std::endl;
minr = avail;
if (m_minfill == 0) {
m_minfill = m_outputBuffer[0]->getReadSpace();
// cerr << "minfill = " << m_minfill << endl;
}
}

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -15,7 +15,7 @@
#ifndef _RUBBERBAND_PITCH_SHIFTER_H_
#define _RUBBERBAND_PITCH_SHIFTER_H_
#include "ladspa.h"
#include <ladspa.h>
#include "RingBuffer.h"
@ -38,11 +38,13 @@ protected:
SemitonesPort = 2,
CentsPort = 3,
CrispnessPort = 4,
InputPort1 = 5,
OutputPort1 = 6,
FormantPort = 5,
FastPort = 6,
InputPort1 = 7,
OutputPort1 = 8,
PortCountMono = OutputPort1 + 1,
InputPort2 = 7,
OutputPort2 = 8,
InputPort2 = 9,
OutputPort2 = 10,
PortCountStereo = OutputPort2 + 1
};
@ -66,9 +68,13 @@ protected:
static void deactivate(LADSPA_Handle);
static void cleanup(LADSPA_Handle);
void activateImpl();
void runImpl(unsigned long);
void runImpl(unsigned long, unsigned long offset);
void updateRatio();
void updateCrispness();
void updateFormant();
void updateFast();
float *m_input[2];
float *m_output[2];
@ -77,11 +83,17 @@ protected:
float *m_semitones;
float *m_octaves;
float *m_crispness;
float *m_formant;
float *m_fast;
double m_ratio;
double m_prevRatio;
int m_currentCrispness;
bool m_currentFormant;
bool m_currentFast;
size_t m_extraLatency;
size_t m_blockSize;
size_t m_reserve;
size_t m_minfill;
RubberBand::RubberBandStretcher *m_stretcher;
RubberBand::RingBuffer<float> *m_outputBuffer[2];

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -18,15 +18,19 @@
#include <iostream>
#include <sndfile.h>
#include <cmath>
#include <cstdlib>
#include <sys/time.h>
#include <time.h>
#include <cstdlib>
#include <cstring>
#include "sysutils.h"
#ifdef __MSVC__
#include "bsd-3rdparty/getopt/getopt.h"
#else
#include <getopt.h>
#include <sys/time.h>
#endif
// for import and export of FFTW wisdom
#include <fftw3.h>
#include "Profiler.h"
using namespace std;
using namespace RubberBand;
@ -36,23 +40,48 @@ using RubberBand::gettimeofday;
using RubberBand::usleep;
#endif
double tempo_convert(const char *str)
{
char *d = strchr((char *)str, ':');
if (!d || !*d) {
double m = atof(str);
if (m != 0.0) return 1.0 / m;
else return 1.0;
}
char *a = strdup(str);
char *b = strdup(d+1);
a[d-str] = '\0';
double m = atof(a);
double n = atof(b);
free(a);
free(b);
if (n != 0.0 && m != 0.0) return m / n;
else return 1.0;
}
int main(int argc, char **argv)
{
int c;
double ratio = 1.0;
double pitchshift = 1.0;
double duration = 0.0;
double pitchshift = 0.0;
double frequencyshift = 1.0;
int debug = 0;
bool realtime = false;
bool precise = false;
int threading = 0;
bool peaklock = true;
bool lamination = true;
bool longwin = false;
bool shortwin = false;
bool softening = true;
bool hqpitch = false;
bool formant = false;
bool crispchanged = false;
int crispness = -1;
bool help = false;
bool version = false;
bool quiet = false;
bool haveRatio = false;
@ -63,17 +92,15 @@ int main(int argc, char **argv)
Transients
} transients = Transients;
float fthresh0 = -1.f;
float fthresh1 = -1.f;
float fthresh2 = -1.f;
while (1) {
int optionIndex = 0;
static struct option longOpts[] = {
{ "help", 0, 0, 'h' },
{ "version", 0, 0, 'V' },
{ "time", 1, 0, 't' },
{ "tempo", 1, 0, 'T' },
{ "duration", 1, 0, 'D' },
{ "pitch", 1, 0, 'p' },
{ "frequency", 1, 0, 'f' },
{ "crisp", 1, 0, 'c' },
@ -81,75 +108,81 @@ int main(int argc, char **argv)
{ "debug", 1, 0, 'd' },
{ "realtime", 0, 0, 'R' },
{ "precise", 0, 0, 'P' },
{ "formant", 0, 0, 'F' },
{ "no-threads", 0, 0, '0' },
{ "no-transients", 0, 0, '1' },
{ "no-peaklock", 0, 0, '2' },
{ "no-lamination", 0, 0, '2' },
{ "window-long", 0, 0, '3' },
{ "window-short", 0, 0, '4' },
{ "thresh0", 1, 0, '5' },
{ "thresh1", 1, 0, '6' },
{ "thresh2", 1, 0, '7' },
{ "bl-transients", 0, 0, '8' },
{ "no-softening", 0, 0, '9' },
{ "pitch-hq", 0, 0, '%' },
{ "threads", 0, 0, '@' },
{ "quiet", 0, 0, 'q' },
{ 0, 0, 0 }
};
c = getopt_long(argc, argv, "t:p:d:RPc:f:qh", longOpts, &optionIndex);
c = getopt_long(argc, argv, "t:p:d:RPFc:f:T:D:qhV", longOpts, &optionIndex);
if (c == -1) break;
switch (c) {
case 'h': help = true; break;
case 'V': version = true; break;
case 't': ratio *= atof(optarg); haveRatio = true; break;
case 'T': { double m = atof(optarg); if (m != 0.0) ratio /= m; }; haveRatio = true; break;
case 'T': ratio *= tempo_convert(optarg); haveRatio = true; break;
case 'D': duration = atof(optarg); haveRatio = true; break;
case 'p': pitchshift = atof(optarg); haveRatio = true; break;
case 'f': frequencyshift = atof(optarg); haveRatio = true; break;
case 'd': debug = atoi(optarg); break;
case 'R': realtime = true; break;
case 'P': precise = true; break;
case 'F': formant = true; break;
case '0': threading = 1; break;
case '@': threading = 2; break;
case '1': transients = NoTransients; break;
case '2': peaklock = false; break;
case '3': longwin = true; break;
case '4': shortwin = true; break;
case '5': fthresh0 = atof(optarg); break;
case '6': fthresh1 = atof(optarg); break;
case '7': fthresh2 = atof(optarg); break;
case '8': transients = BandLimitedTransients; break;
case '9': softening = false; break;
case '1': transients = NoTransients; crispchanged = true; break;
case '2': lamination = false; crispchanged = true; break;
case '3': longwin = true; crispchanged = true; break;
case '4': shortwin = true; crispchanged = true; break;
case '8': transients = BandLimitedTransients; crispchanged = true; break;
case '%': hqpitch = true; break;
case 'c': crispness = atoi(optarg); break;
case 'q': quiet = true; break;
default: help = true; break;
}
}
if (version) {
cerr << RUBBERBAND_VERSION << endl;
return 0;
}
if (help || !haveRatio || optind + 2 != argc) {
cerr << endl;
cerr << "Rubber Band" << endl;
cerr << "An audio time-stretching and pitch-shifting library and utility program." << endl;
cerr << "Copyright 2007 Chris Cannam. Distributed under the GNU General Public License." << endl;
cerr << "Copyright 2008 Chris Cannam. Distributed under the GNU General Public License." << endl;
cerr << endl;
cerr << " Usage: " << argv[0] << " [options] <infile.wav> <outfile.wav>" << endl;
cerr << endl;
cerr << "You must specify at least one of the following time and pitch ratio options." << endl;
cerr << endl;
cerr << " -t<X>, --time <X> Stretch to X times original duration, or" << endl;
cerr << " -T<X>, --tempo <X> Change tempo by multiple X (equivalent to --time 1/X)" << endl;
cerr << " -T<X>, --tempo <X> Change tempo by multiple X (same as --time 1/X), or" << endl;
cerr << " -T<X>, --tempo <X>:<Y> Change tempo from X to Y (same as --time X/Y), or" << endl;
cerr << " -D<X>, --duration <X> Stretch or squash to make output file X seconds long" << endl;
cerr << endl;
cerr << " -p<X>, --pitch <X> Raise pitch by X semitones, or" << endl;
cerr << " -f<X>, --frequency <X> Change frequency by multiple X" << endl;
cerr << endl;
cerr << "The following option provides a simple way to adjust the sound. See below" << endl;
cerr << "The following options provide a simple way to adjust the sound. See below" << endl;
cerr << "for more details." << endl;
cerr << endl;
cerr << " -c<N>, --crisp <N> Crispness (N = 0,1,2,3,4,5); default 4 (see below)" << endl;
cerr << " -F, --formant Enable formant preservation when pitch shifting" << endl;
cerr << endl;
cerr << "The remaining options fine-tune the processing mode and stretch algorithm." << endl;
cerr << "These are mostly included for test purposes; the default settings and standard" << endl;
cerr << "crispness parameter are intended to provide the best sounding set of options" << endl;
cerr << "for most situations." << endl;
cerr << "for most situations. The default is to use none of these options." << endl;
cerr << endl;
cerr << " -P, --precise Aim for minimal time distortion (implied by -R)" << endl;
cerr << " -R, --realtime Select realtime mode (implies -P --no-threads)" << endl;
@ -157,37 +190,42 @@ int main(int argc, char **argv)
cerr << " --threads Assume multi-CPU even if only one CPU is identified" << endl;
cerr << " --no-transients Disable phase resynchronisation at transients" << endl;
cerr << " --bl-transients Band-limit phase resync to extreme frequencies" << endl;
cerr << " --no-peaklock Disable phase locking to peak frequencies" << endl;
cerr << " --no-softening Disable large-ratio softening of phase locking" << endl;
cerr << " --no-lamination Disable phase lamination" << endl;
cerr << " --window-long Use longer processing window (actual size may vary)" << endl;
cerr << " --window-short Use shorter processing window" << endl;
cerr << " --thresh<N> <F> Set internal freq threshold N (N = 0,1,2) to F Hz" << endl;
cerr << " --pitch-hq In RT mode, use a slower, higher quality pitch shift" << endl;
cerr << endl;
cerr << " -d<N>, --debug <N> Select debug level (N = 0,1,2,3); default 0, full 3" << endl;
cerr << " (N.B. debug level 3 includes audible ticks in output)" << endl;
cerr << " -q, --quiet Suppress progress output" << endl;
cerr << endl;
cerr << " -V, --version Show version number and exit" << endl;
cerr << " -h, --help Show this help" << endl;
cerr << endl;
cerr << "\"Crispness\" levels:" << endl;
cerr << " -c 0 equivalent to --no-transients --no-peaklock --window-long" << endl;
cerr << " -c 1 equivalent to --no-transients --no-peaklock" << endl;
cerr << " -c 0 equivalent to --no-transients --no-lamination --window-long" << endl;
cerr << " -c 1 equivalent to --no-transients --no-lamination" << endl;
cerr << " -c 2 equivalent to --no-transients" << endl;
cerr << " -c 3 equivalent to --bl-transients" << endl;
cerr << " -c 4 default processing options" << endl;
cerr << " -c 5 equivalent to --no-peaklock --window-short (may be suitable for drums)" << endl;
cerr << " -c 5 equivalent to --no-lamination --window-short (may be good for drums)" << endl;
cerr << endl;
return 2;
}
if (crispness >= 0 && crispchanged) {
cerr << "WARNING: Both crispness option and transients, lamination or window options" << endl;
cerr << " provided -- crispness will override these other options" << endl;
}
switch (crispness) {
case -1: crispness = 4; break;
case 0: transients = NoTransients; peaklock = false; longwin = true; shortwin = false; break;
case 1: transients = NoTransients; peaklock = false; longwin = false; shortwin = false; break;
case 2: transients = NoTransients; peaklock = true; longwin = false; shortwin = false; break;
case 3: transients = BandLimitedTransients; peaklock = true; longwin = false; shortwin = false; break;
case 4: transients = Transients; peaklock = true; longwin = false; shortwin = false; break;
case 5: transients = Transients; peaklock = false; longwin = false; shortwin = true; break;
case 0: transients = NoTransients; lamination = false; longwin = true; shortwin = false; break;
case 1: transients = NoTransients; lamination = false; longwin = false; shortwin = false; break;
case 2: transients = NoTransients; lamination = true; longwin = false; shortwin = false; break;
case 3: transients = BandLimitedTransients; lamination = true; longwin = false; shortwin = false; break;
case 4: transients = Transients; lamination = true; longwin = false; shortwin = false; break;
case 5: transients = Transients; lamination = false; longwin = false; shortwin = true; break;
};
if (!quiet) {
@ -205,7 +243,7 @@ int main(int argc, char **argv)
char *fileName = strdup(argv[optind++]);
char *fileNameOut = strdup(argv[optind++]);
SNDFILE *sndfile;
SNDFILE *sndfileOut;
SF_INFO sfinfo;
@ -219,6 +257,15 @@ int main(int argc, char **argv)
return 1;
}
if (duration != 0.0) {
if (sfinfo.frames == 0 || sfinfo.samplerate == 0) {
cerr << "ERROR: File lacks frame count or sample rate in header, cannot use --duration" << endl;
return 1;
}
double induration = double(sfinfo.frames) / double(sfinfo.samplerate);
if (induration != 0.0) ratio = duration / induration;
}
sfinfoOut.channels = sfinfo.channels;
sfinfoOut.format = sfinfo.format;
sfinfoOut.frames = int(sfinfo.frames * ratio + 0.1);
@ -228,8 +275,8 @@ int main(int argc, char **argv)
sndfileOut = sf_open(fileNameOut, SFM_WRITE, &sfinfoOut) ;
if (!sndfileOut) {
cerr << "ERROR: Failed to open output file \"" << fileName << "\" for writing: "
<< sf_strerror(sndfile) << endl;
cerr << "ERROR: Failed to open output file \"" << fileNameOut << "\" for writing: "
<< sf_strerror(sndfileOut) << endl;
return 1;
}
@ -239,10 +286,11 @@ int main(int argc, char **argv)
RubberBandStretcher::Options options = 0;
if (realtime) options |= RubberBandStretcher::OptionProcessRealTime;
if (precise) options |= RubberBandStretcher::OptionStretchPrecise;
if (!peaklock) options |= RubberBandStretcher::OptionPhaseIndependent;
if (!softening) options |= RubberBandStretcher::OptionPhasePeakLocked;
if (!lamination) options |= RubberBandStretcher::OptionPhaseIndependent;
if (longwin) options |= RubberBandStretcher::OptionWindowLong;
if (shortwin) options |= RubberBandStretcher::OptionWindowShort;
if (formant) options |= RubberBandStretcher::OptionFormantPreserved;
if (hqpitch) options |= RubberBandStretcher::OptionPitchHighQuality;
switch (threading) {
case 0:
@ -268,10 +316,13 @@ int main(int argc, char **argv)
break;
}
if (pitchshift != 1.0) {
if (pitchshift != 0.0) {
frequencyshift *= pow(2.0, pitchshift / 12);
}
cerr << "Using time ratio " << ratio;
cerr << " and frequency ratio " << frequencyshift << endl;
#ifdef _WIN32
RubberBand::
#endif
@ -471,6 +522,8 @@ int main(int argc, char **argv)
cerr << "elapsed time: " << sec << " sec, in frames/sec: " << countIn/sec << ", out frames/sec: " << countOut/sec << endl;
}
Profiler::dump();
return 0;
}

View file

@ -0,0 +1,146 @@
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "rubberband-c.h"
#include "RubberBandStretcher.h"
struct RubberBandState_
{
RubberBand::RubberBandStretcher *m_s;
};
RubberBandState rubberband_new(unsigned int sampleRate,
unsigned int channels,
RubberBandOptions options,
double initialTimeRatio,
double initialPitchScale)
{
RubberBandState_ *state = new RubberBandState_();
state->m_s = new RubberBand::RubberBandStretcher
(sampleRate, channels, options,
initialTimeRatio, initialPitchScale);
return state;
}
void rubberband_delete(RubberBandState state)
{
delete state->m_s;
delete state;
}
void rubberband_reset(RubberBandState state)
{
state->m_s->reset();
}
void rubberband_set_time_ratio(RubberBandState state, double ratio)
{
state->m_s->setTimeRatio(ratio);
}
void rubberband_set_pitch_scale(RubberBandState state, double scale)
{
state->m_s->setPitchScale(scale);
}
double rubberband_get_time_ratio(const RubberBandState state)
{
return state->m_s->getTimeRatio();
}
double rubberband_get_pitch_scale(const RubberBandState state)
{
return state->m_s->getPitchScale();
}
unsigned int rubberband_get_latency(const RubberBandState state)
{
return state->m_s->getLatency();
}
void rubberband_set_transients_option(RubberBandState state, RubberBandOptions options)
{
state->m_s->setTransientsOption(options);
}
void rubberband_set_phase_option(RubberBandState state, RubberBandOptions options)
{
state->m_s->setPhaseOption(options);
}
void rubberband_set_formant_option(RubberBandState state, RubberBandOptions options)
{
state->m_s->setFormantOption(options);
}
void rubberband_set_pitch_option(RubberBandState state, RubberBandOptions options)
{
state->m_s->setPitchOption(options);
}
void rubberband_set_expected_input_duration(RubberBandState state, unsigned int samples)
{
state->m_s->setExpectedInputDuration(samples);
}
unsigned int rubberband_get_samples_required(const RubberBandState state)
{
return state->m_s->getSamplesRequired();
}
void rubberband_set_max_process_size(RubberBandState state, unsigned int samples)
{
state->m_s->setMaxProcessSize(samples);
}
void rubberband_study(RubberBandState state, const float *const *input, unsigned int samples, int final)
{
state->m_s->study(input, samples, final != 0);
}
void rubberband_process(RubberBandState state, const float *const *input, unsigned int samples, int final)
{
state->m_s->process(input, samples, final != 0);
}
int rubberband_available(const RubberBandState state)
{
return state->m_s->available();
}
unsigned int rubberband_retrieve(const RubberBandState state, float *const *output, unsigned int samples)
{
return state->m_s->retrieve(output, samples);
}
unsigned int rubberband_get_channel_count(const RubberBandState state)
{
return state->m_s->getChannelCount();
}
void rubberband_calculate_stretch(RubberBandState state)
{
state->m_s->calculateStretch();
}
void rubberband_set_debug_level(RubberBandState state, int level)
{
state->m_s->setDebugLevel(level);
}
void rubberband_set_default_debug_level(int level)
{
RubberBand::RubberBandStretcher::setDefaultDebugLevel(level);
}

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -27,6 +27,7 @@
#include <iostream>
namespace RubberBand {
bool
@ -81,7 +82,7 @@ system_is_multiprocessor()
#ifdef _WIN32
void gettimeofday(struct timeval *tv, void *tz)
int gettimeofday(struct timeval *tv, void *tz)
{
union {
long long ns100;
@ -91,6 +92,7 @@ void gettimeofday(struct timeval *tv, void *tz)
::GetSystemTimeAsFileTime(&now.ft);
tv->tv_usec = (long)((now.ns100 / 10LL) % 1000000LL);
tv->tv_sec = (long)((now.ns100 - 116444736000000000LL) / 10000000LL);
return 0;
}
void usleep(unsigned long usec)
@ -100,6 +102,52 @@ void usleep(unsigned long usec)
#endif
float *allocFloat(float *ptr, int count)
{
if (ptr) free((void *)ptr);
void *allocated;
#ifndef _WIN32
if (!posix_memalign(&allocated, 16, count * sizeof(float)))
#endif
allocated = malloc(count * sizeof(float));
for (int i = 0; i < count; ++i) ((float *)allocated)[i] = 0.f;
return (float *)allocated;
}
float *allocFloat(int count)
{
return allocFloat(0, count);
}
void freeFloat(float *ptr)
{
if (ptr) free(ptr);
}
double *allocDouble(double *ptr, int count)
{
if (ptr) free((void *)ptr);
void *allocated;
#ifndef _WIN32
if (!posix_memalign(&allocated, 16, count * sizeof(double)))
#endif
allocated = malloc(count * sizeof(double));
for (int i = 0; i < count; ++i) ((double *)allocated)[i] = 0.f;
return (double *)allocated;
}
double *allocDouble(int count)
{
return allocDouble(0, count);
}
void freeDouble(double *ptr)
{
if (ptr) free(ptr);
}
}

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -15,16 +15,48 @@
#ifndef _RUBBERBAND_SYSINFO_H_
#define _RUBBERBAND_SYSINFO_H_
#ifdef __MSVC__
#include "bsd-3rdparty/float_cast/float_cast.h"
#define R__ __restrict
#endif
#ifdef __GNUC__
#define R__ __restrict__
#endif
#ifndef R__
#define R__
#endif
#ifdef __MINGW32__
#include <malloc.h>
#endif
#ifdef __MSVC__
#define alloca _alloca
#endif
namespace RubberBand {
extern bool system_is_multiprocessor();
#ifdef _WIN32
struct timeval { long tv_sec; long tv_usec; };
void gettimeofday(struct timeval *p, void *tz);
int gettimeofday(struct timeval *p, void *tz);
void usleep(unsigned long);
#endif
extern float *allocFloat(int);
extern float *allocFloat(float *, int);
extern void freeFloat(float *);
extern double *allocDouble(int);
extern double *allocDouble(double *, int);
extern void freeDouble(double *);
}
#endif

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
@ -15,6 +15,7 @@
#include "RubberBandVampPlugin.h"
#include "StretchCalculator.h"
#include "sysutils.h"
#include <cmath>
@ -123,7 +124,7 @@ RubberBandVampPlugin::getDescription() const
string
RubberBandVampPlugin::getMaker() const
{
return "Rubber Band"; ///!!!
return "Breakfast Quay";
}
int
@ -159,7 +160,7 @@ RubberBandVampPlugin::getOutputDescriptors() const
d.isQuantized = true;
d.quantizeStep = 1.0;
d.sampleType = OutputDescriptor::VariableSampleRate;
d.sampleRate = rate;
d.sampleRate = float(rate);
m_d->m_incrementsOutput = list.size();
list.push_back(d);
@ -182,7 +183,7 @@ RubberBandVampPlugin::getOutputDescriptors() const
d.name = "Phase Reset Detection Function";
d.description = "Curve whose peaks are used to identify transients for phase reset points";
d.unit = "";
d.sampleRate = rate;
d.sampleRate = float(rate);
m_d->m_phaseResetDfOutput = list.size();
list.push_back(d);
@ -326,11 +327,11 @@ RubberBandVampPlugin::getParameter(std::string id) const
{
if (id == "timeratio") return m_d->m_timeRatio * 100.f;
if (id == "pitchratio") return m_d->m_pitchRatio * 100.f;
if (id == "mode") return m_d->m_realtime ? 1 : 0;
if (id == "stretchtype") return m_d->m_elasticTiming ? 0 : 1;
if (id == "transientmode") return m_d->m_transientMode;
if (id == "phasemode") return m_d->m_phaseIndependent ? 1 : 0;
if (id == "windowmode") return m_d->m_windowLength;
if (id == "mode") return m_d->m_realtime ? 1.f : 0.f;
if (id == "stretchtype") return m_d->m_elasticTiming ? 0.f : 1.f;
if (id == "transientmode") return float(m_d->m_transientMode);
if (id == "phasemode") return m_d->m_phaseIndependent ? 1.f : 0.f;
if (id == "windowmode") return float(m_d->m_windowLength);
return 0.f;
}
@ -378,7 +379,7 @@ RubberBandVampPlugin::initialise(size_t channels, size_t stepSize, size_t blockS
if (m_d->m_phaseIndependent)
options |= RubberBand::RubberBandStretcher::OptionPhaseIndependent;
else options |= RubberBand::RubberBandStretcher::OptionPhasePeakLocked;
else options |= RubberBand::RubberBandStretcher::OptionPhaseLaminar;
if (m_d->m_windowLength == 0)
options |= RubberBand::RubberBandStretcher::OptionWindowStandard;
@ -565,12 +566,12 @@ RubberBandVampPlugin::Impl::createFeatures(size_t inputIncrement,
Feature feature;
feature.hasTimestamp = true;
feature.timestamp = t;
feature.values.push_back(oi);
feature.values.push_back(float(oi));
feature.label = Vamp::RealTime::frame2RealTime(oi, rate).toText();
features[m_incrementsOutput].push_back(feature);
feature.values.clear();
feature.values.push_back(actual);
feature.values.push_back(float(actual));
feature.label = Vamp::RealTime::frame2RealTime(actual, rate).toText();
features[m_aggregateIncrementsOutput].push_back(feature);
@ -594,7 +595,7 @@ RubberBandVampPlugin::Impl::createFeatures(size_t inputIncrement,
if (i < phaseResetDf.size()) {
feature.values.clear();
feature.values.push_back(phaseResetDf[i]);
sprintf(buf, "%d", baseCount + i);
sprintf(buf, "%d", int(baseCount + i));
feature.label = buf;
features[m_phaseResetDfOutput].push_back(feature);
}
@ -626,7 +627,7 @@ RubberBandVampPlugin::Impl::createFeatures(size_t inputIncrement,
feature.timestamp = t;
feature.label = Vamp::RealTime::frame2RealTime(actual, rate).toText();
feature.values.clear();
feature.values.push_back(actual);
feature.values.push_back(float(actual));
features[m_aggregateIncrementsOutput].push_back(feature);
float linear = ((baseCount + outputIncrements.size())

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as

View file

@ -3,7 +3,7 @@
/*
Rubber Band
An audio time-stretching and pitch-shifting library.
Copyright 2007 Chris Cannam.
Copyright 2007-2008 Chris Cannam.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as

View file

@ -1,4 +1,4 @@
#ifndef __ardour_svn_revision_h__
#define __ardour_svn_revision_h__
static const char* ardour_svn_revision = "3527";
static const char* ardour_svn_revision = "3530";
#endif