mirror of
https://github.com/Ardour/ardour.git
synced 2026-01-06 05:35:47 +01:00
interpolation.cc/.h: Spline-Bugfixes: Crash bug at tempos close to 0, wrong calculation of M, unbounded precalculated L/U Matrices
git-svn-id: svn://localhost/ardour2/branches/3.0@5410 d708f5d6-7413-0410-9779-e7cbd77b26cf
This commit is contained in:
parent
272cad6241
commit
b0bb5342dd
4 changed files with 119 additions and 28 deletions
|
|
@ -120,10 +120,12 @@ SplineInterpolation::SplineInterpolation()
|
|||
{
|
||||
// precompute LU-factorization of matrix A
|
||||
// see "Teubner Taschenbuch der Mathematik", p. 1105
|
||||
m[0] = 4.0;
|
||||
for (int i = 0; i <= MAX_PERIOD_SIZE - 2; i++) {
|
||||
l[i] = 1.0 / m[i];
|
||||
m[i+1] = 4.0 - l[i];
|
||||
// We only need to calculate up to 20, because they
|
||||
// won't change any more above that
|
||||
_m[0] = 4.0;
|
||||
for (int i = 0; i <= 20 - 2; i++) {
|
||||
_l[i] = 1.0 / _m[i];
|
||||
_m[i+1] = 4.0 - _l[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -131,9 +133,12 @@ nframes_t
|
|||
SplineInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output)
|
||||
{
|
||||
// How many input samples we need
|
||||
nframes_t n = ceil (double(nframes) * _speed) + 2;
|
||||
// |------------------------------------------^
|
||||
// this won't be here in the debugged version.
|
||||
nframes_t n = ceil (double(nframes) * _speed + phase[channel]) + 1;
|
||||
//printf("n = %d\n", n);
|
||||
|
||||
if (n <= 3) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
double M[n], t[n-2];
|
||||
|
||||
|
|
@ -142,20 +147,19 @@ SplineInterpolation::interpolate (int channel, nframes_t nframes, Sample *input,
|
|||
M[n - 1] = 0.0;
|
||||
|
||||
// solve L * t = d
|
||||
// see "Teubner Taschenbuch der Mathematik", p. 1105
|
||||
t[0] = 6.0 * (input[0] - 2*input[1] + input[2]);
|
||||
for (nframes_t i = 1; i <= n - 3; i++) {
|
||||
t[i] = 6.0 * (input[i] - 2*input[i+1] + input[i+2])
|
||||
- l[i-1] * t[i-1];
|
||||
- l(i-1) * t[i-1];
|
||||
}
|
||||
|
||||
// solve R * M = t
|
||||
// see "Teubner Taschenbuch der Mathematik", p. 1105
|
||||
M[n-2] = -t[n-3] / m[n-3];
|
||||
// solve U * M = t
|
||||
M[n-2] = t[n-3] / m(n-3);
|
||||
for (nframes_t i = n-4;; i--) {
|
||||
M[i+1] = -(t[i] + M[i+2]) / m[i];
|
||||
M[i+1] = (t[i]-M[i+2])/m(i);
|
||||
if ( i == 0 ) break;
|
||||
}
|
||||
assert (M[0] == 0.0 && M[n-1] == 0.0);
|
||||
|
||||
// now interpolate
|
||||
// index in the input buffers
|
||||
|
|
@ -174,29 +178,32 @@ SplineInterpolation::interpolate (int channel, nframes_t nframes, Sample *input,
|
|||
for (nframes_t outsample = 0; outsample < nframes; outsample++) {
|
||||
i = floor(distance);
|
||||
|
||||
Sample x = distance - i;
|
||||
Sample x = double(distance) - double(i);
|
||||
|
||||
/* this would break the assertion below
|
||||
// if distance is something like 0.999999999999
|
||||
// it will get rounded to 1 in the conversion to float above
|
||||
if (x >= 1.0) {
|
||||
x -= 1.0;
|
||||
x = 0.0;
|
||||
i++;
|
||||
}
|
||||
*/
|
||||
|
||||
assert(x >= 0.0 && x < 1.0);
|
||||
|
||||
if (input && output) {
|
||||
assert (i <= n-1);
|
||||
double a0 = input[i];
|
||||
double a1 = input[i+1] - input[i] - M[i+1]/6.0 - M[i]/3.0;
|
||||
double a2 = M[i] / 2.0;
|
||||
double a3 = (M[i+1] - M[i]) / 6.0;
|
||||
double a2 = M[i] / 2.0;
|
||||
double a1 = input[i+1] - input[i] - (M[i+1] + 2.0*M[i])/6.0;
|
||||
double a0 = input[i];
|
||||
// interpolate into the output buffer
|
||||
output[outsample] = ((a3*x +a2)*x +a1)*x + a0;
|
||||
output[outsample] = ((a3*x + a2)*x + a1)*x + a0;
|
||||
}
|
||||
distance += _speed + acceleration;
|
||||
}
|
||||
|
||||
i = floor(distance);
|
||||
phase[channel] = distance - floor(distance);
|
||||
assert (phase[channel] >= 0.0 && phase[channel] < 1.0);
|
||||
|
||||
return i;
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue