Update Fluidsynth to 2.0.1

This commit is contained in:
Robin Gareus 2018-10-18 00:41:02 +02:00
parent 5b280463ce
commit abf7905d5f
72 changed files with 26031 additions and 16899 deletions

View file

@ -3,16 +3,16 @@
* Copyright (C) 2003 Peter Hanappe and others.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public License
* as published by the Free Software Foundation; either version 2 of
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
@ -20,15 +20,17 @@
#include "fluid_conv.h"
#define FLUID_CENTS_HZ_SIZE 1200
#define FLUID_VEL_CB_SIZE 128
#define FLUID_CB_AMP_SIZE 1441
#define FLUID_PAN_SIZE 1002
/* conversion tables */
fluid_real_t fluid_ct2hz_tab[FLUID_CENTS_HZ_SIZE];
fluid_real_t fluid_cb2amp_tab[FLUID_CB_AMP_SIZE];
fluid_real_t fluid_atten2amp_tab[FLUID_ATTEN_AMP_SIZE];
fluid_real_t fluid_posbp_tab[128];
fluid_real_t fluid_concave_tab[128];
fluid_real_t fluid_convex_tab[128];
fluid_real_t fluid_pan_tab[FLUID_PAN_SIZE];
static fluid_real_t fluid_ct2hz_tab[FLUID_CENTS_HZ_SIZE];
static fluid_real_t fluid_cb2amp_tab[FLUID_CB_AMP_SIZE];
static fluid_real_t fluid_concave_tab[FLUID_VEL_CB_SIZE];
static fluid_real_t fluid_convex_tab[FLUID_VEL_CB_SIZE];
static fluid_real_t fluid_pan_tab[FLUID_PAN_SIZE];
/*
* void fluid_synth_init
@ -38,58 +40,52 @@ fluid_real_t fluid_pan_tab[FLUID_PAN_SIZE];
void
fluid_conversion_config(void)
{
int i;
double x;
int i;
double x;
for (i = 0; i < FLUID_CENTS_HZ_SIZE; i++) {
fluid_ct2hz_tab[i] = (fluid_real_t) pow(2.0, (double) i / 1200.0);
}
for(i = 0; i < FLUID_CENTS_HZ_SIZE; i++)
{
fluid_ct2hz_tab[i] = (fluid_real_t) pow(2.0, (double) i / 1200.0);
}
/* centibels to amplitude conversion
* Note: SF2.01 section 8.1.3: Initial attenuation range is
* between 0 and 144 dB. Therefore a negative attenuation is
* not allowed.
*/
for (i = 0; i < FLUID_CB_AMP_SIZE; i++) {
fluid_cb2amp_tab[i] = (fluid_real_t) pow(10.0, (double) i / -200.0);
}
/* centibels to amplitude conversion
* Note: SF2.01 section 8.1.3: Initial attenuation range is
* between 0 and 144 dB. Therefore a negative attenuation is
* not allowed.
*/
for(i = 0; i < FLUID_CB_AMP_SIZE; i++)
{
fluid_cb2amp_tab[i] = (fluid_real_t) pow(10.0, (double) i / -200.0);
}
/* NOTE: EMU8k and EMU10k devices don't conform to the SoundFont
* specification in regards to volume attenuation. The below calculation
* is an approx. equation for generating a table equivelant to the
* cb_to_amp_table[] in tables.c of the TiMidity++ source, which I'm told
* was generated from device testing. By the spec this should be centibels.
*/
for (i = 0; i < FLUID_ATTEN_AMP_SIZE; i++) {
fluid_atten2amp_tab[i] = (fluid_real_t) pow(10.0, (double) i / FLUID_ATTEN_POWER_FACTOR);
}
/* initialize the conversion tables (see fluid_mod.c
fluid_mod_get_value cases 4 and 8) */
/* initialize the conversion tables (see fluid_mod.c
fluid_mod_get_value cases 4 and 8) */
/* concave unipolar positive transform curve */
fluid_concave_tab[0] = 0.0;
fluid_concave_tab[FLUID_VEL_CB_SIZE - 1] = 1.0;
/* concave unipolar positive transform curve */
fluid_concave_tab[0] = 0.0;
fluid_concave_tab[127] = 1.0;
/* convex unipolar positive transform curve */
fluid_convex_tab[0] = 0;
fluid_convex_tab[FLUID_VEL_CB_SIZE - 1] = 1.0;
/* convex unipolar positive transform curve */
fluid_convex_tab[0] = 0;
fluid_convex_tab[127] = 1.0;
x = log10(128.0 / 127.0);
/* There seems to be an error in the specs. The equations are
implemented according to the pictures on SF2.01 page 73. */
/* There seems to be an error in the specs. The equations are
implemented according to the pictures on SF2.01 page 73. */
for(i = 1; i < FLUID_VEL_CB_SIZE - 1; i++)
{
x = (-200.0 / FLUID_PEAK_ATTENUATION) * log((i * i) / (fluid_real_t)((FLUID_VEL_CB_SIZE - 1) * (FLUID_VEL_CB_SIZE - 1))) / M_LN10;
fluid_convex_tab[i] = (fluid_real_t)(1.0 - x);
fluid_concave_tab[(FLUID_VEL_CB_SIZE - 1) - i] = (fluid_real_t) x;
}
for (i = 1; i < 127; i++) {
x = -20.0 / 96.0 * log((i * i) / (127.0 * 127.0)) / log(10.0);
fluid_convex_tab[i] = (fluid_real_t) (1.0 - x);
fluid_concave_tab[127 - i] = (fluid_real_t) x;
}
/* initialize the pan conversion table */
x = M_PI / 2.0 / (FLUID_PAN_SIZE - 1.0);
/* initialize the pan conversion table */
x = PI / 2.0 / (FLUID_PAN_SIZE - 1.0);
for (i = 0; i < FLUID_PAN_SIZE; i++) {
fluid_pan_tab[i] = (fluid_real_t) sin(i * x);
}
for(i = 0; i < FLUID_PAN_SIZE; i++)
{
fluid_pan_tab[i] = (fluid_real_t) sin(i * x);
}
}
/*
@ -98,35 +94,62 @@ fluid_conversion_config(void)
fluid_real_t
fluid_ct2hz_real(fluid_real_t cents)
{
if (cents < 0)
return (fluid_real_t) 1.0;
else if (cents < 900) {
return (fluid_real_t) 6.875 * fluid_ct2hz_tab[(int) (cents + 300)];
} else if (cents < 2100) {
return (fluid_real_t) 13.75 * fluid_ct2hz_tab[(int) (cents - 900)];
} else if (cents < 3300) {
return (fluid_real_t) 27.5 * fluid_ct2hz_tab[(int) (cents - 2100)];
} else if (cents < 4500) {
return (fluid_real_t) 55.0 * fluid_ct2hz_tab[(int) (cents - 3300)];
} else if (cents < 5700) {
return (fluid_real_t) 110.0 * fluid_ct2hz_tab[(int) (cents - 4500)];
} else if (cents < 6900) {
return (fluid_real_t) 220.0 * fluid_ct2hz_tab[(int) (cents - 5700)];
} else if (cents < 8100) {
return (fluid_real_t) 440.0 * fluid_ct2hz_tab[(int) (cents - 6900)];
} else if (cents < 9300) {
return (fluid_real_t) 880.0 * fluid_ct2hz_tab[(int) (cents - 8100)];
} else if (cents < 10500) {
return (fluid_real_t) 1760.0 * fluid_ct2hz_tab[(int) (cents - 9300)];
} else if (cents < 11700) {
return (fluid_real_t) 3520.0 * fluid_ct2hz_tab[(int) (cents - 10500)];
} else if (cents < 12900) {
return (fluid_real_t) 7040.0 * fluid_ct2hz_tab[(int) (cents - 11700)];
} else if (cents < 14100) {
return (fluid_real_t) 14080.0 * fluid_ct2hz_tab[(int) (cents - 12900)];
} else {
return (fluid_real_t) 1.0; /* some loony trying to make you deaf */
}
if(cents < 0)
{
return (fluid_real_t) 1.0;
}
else if(cents < 900)
{
return (fluid_real_t) 6.875 * fluid_ct2hz_tab[(int)(cents + 300)];
}
else if(cents < 2100)
{
return (fluid_real_t) 13.75 * fluid_ct2hz_tab[(int)(cents - 900)];
}
else if(cents < 3300)
{
return (fluid_real_t) 27.5 * fluid_ct2hz_tab[(int)(cents - 2100)];
}
else if(cents < 4500)
{
return (fluid_real_t) 55.0 * fluid_ct2hz_tab[(int)(cents - 3300)];
}
else if(cents < 5700)
{
return (fluid_real_t) 110.0 * fluid_ct2hz_tab[(int)(cents - 4500)];
}
else if(cents < 6900)
{
return (fluid_real_t) 220.0 * fluid_ct2hz_tab[(int)(cents - 5700)];
}
else if(cents < 8100)
{
return (fluid_real_t) 440.0 * fluid_ct2hz_tab[(int)(cents - 6900)];
}
else if(cents < 9300)
{
return (fluid_real_t) 880.0 * fluid_ct2hz_tab[(int)(cents - 8100)];
}
else if(cents < 10500)
{
return (fluid_real_t) 1760.0 * fluid_ct2hz_tab[(int)(cents - 9300)];
}
else if(cents < 11700)
{
return (fluid_real_t) 3520.0 * fluid_ct2hz_tab[(int)(cents - 10500)];
}
else if(cents < 12900)
{
return (fluid_real_t) 7040.0 * fluid_ct2hz_tab[(int)(cents - 11700)];
}
else if(cents < 14100)
{
return (fluid_real_t) 14080.0 * fluid_ct2hz_tab[(int)(cents - 12900)];
}
else
{
return (fluid_real_t) 1.0; /* some loony trying to make you deaf */
}
}
/*
@ -135,55 +158,46 @@ fluid_ct2hz_real(fluid_real_t cents)
fluid_real_t
fluid_ct2hz(fluid_real_t cents)
{
/* Filter fc limit: SF2.01 page 48 # 8 */
if (cents >= 13500){
cents = 13500; /* 20 kHz */
} else if (cents < 1500){
cents = 1500; /* 20 Hz */
}
return fluid_ct2hz_real(cents);
/* Filter fc limit: SF2.01 page 48 # 8 */
if(cents >= 13500)
{
cents = 13500; /* 20 kHz */
}
else if(cents < 1500)
{
cents = 1500; /* 20 Hz */
}
return fluid_ct2hz_real(cents);
}
/*
* fluid_cb2amp
*
* in: a value between 0 and 960, 0 is no attenuation
* in: a value between 0 and 1440, 0 is no attenuation
* out: a value between 1 and 0
*/
fluid_real_t
fluid_cb2amp(fluid_real_t cb)
{
/*
* cb: an attenuation in 'centibels' (1/10 dB)
* SF2.01 page 49 # 48 limits it to 144 dB.
* 96 dB is reasonable for 16 bit systems, 144 would make sense for 24 bit.
*/
/*
* cb: an attenuation in 'centibels' (1/10 dB)
* SF2.01 page 49 # 48 limits it to 144 dB.
* 96 dB is reasonable for 16 bit systems, 144 would make sense for 24 bit.
*/
/* minimum attenuation: 0 dB */
if (cb < 0) {
return 1.0;
}
if (cb >= FLUID_CB_AMP_SIZE) {
return 0.0;
}
return fluid_cb2amp_tab[(int) cb];
}
/* minimum attenuation: 0 dB */
if(cb < 0)
{
return 1.0;
}
/*
* fluid_atten2amp
*
* in: a value between 0 and 1440, 0 is no attenuation
* out: a value between 1 and 0
*
* Note: Volume attenuation is supposed to be centibels but EMU8k/10k don't
* follow this. Thats the reason for separate fluid_cb2amp and fluid_atten2amp.
*/
fluid_real_t
fluid_atten2amp(fluid_real_t atten)
{
if (atten < 0) return 1.0;
else if (atten >= FLUID_ATTEN_AMP_SIZE) return 0.0;
else return fluid_atten2amp_tab[(int) atten];
if(cb >= FLUID_CB_AMP_SIZE)
{
return 0.0;
}
return fluid_cb2amp_tab[(int) cb];
}
/*
@ -192,21 +206,27 @@ fluid_atten2amp(fluid_real_t atten)
fluid_real_t
fluid_tc2sec_delay(fluid_real_t tc)
{
/* SF2.01 section 8.1.2 items 21, 23, 25, 33
* SF2.01 section 8.1.3 items 21, 23, 25, 33
*
* The most negative number indicates a delay of 0. Range is limited
* from -12000 to 5000 */
if (tc <= -32768.0f) {
return (fluid_real_t) 0.0f;
};
if (tc < -12000.) {
tc = (fluid_real_t) -12000.0f;
}
if (tc > 5000.0f) {
tc = (fluid_real_t) 5000.0f;
}
return (fluid_real_t) pow(2.0, (double) tc / 1200.0);
/* SF2.01 section 8.1.2 items 21, 23, 25, 33
* SF2.01 section 8.1.3 items 21, 23, 25, 33
*
* The most negative number indicates a delay of 0. Range is limited
* from -12000 to 5000 */
if(tc <= -32768.0f)
{
return (fluid_real_t) 0.0f;
};
if(tc < -12000.)
{
tc = (fluid_real_t) -12000.0f;
}
if(tc > 5000.0f)
{
tc = (fluid_real_t) 5000.0f;
}
return (fluid_real_t) pow(2.0, (double) tc / 1200.0);
}
/*
@ -215,14 +235,26 @@ fluid_tc2sec_delay(fluid_real_t tc)
fluid_real_t
fluid_tc2sec_attack(fluid_real_t tc)
{
/* SF2.01 section 8.1.2 items 26, 34
* SF2.01 section 8.1.3 items 26, 34
* The most negative number indicates a delay of 0
* Range is limited from -12000 to 8000 */
if (tc<=-32768.){return (fluid_real_t) 0.0;};
if (tc<-12000.){tc=(fluid_real_t) -12000.0;};
if (tc>8000.){tc=(fluid_real_t) 8000.0;};
return (fluid_real_t) pow(2.0, (double) tc / 1200.0);
/* SF2.01 section 8.1.2 items 26, 34
* SF2.01 section 8.1.3 items 26, 34
* The most negative number indicates a delay of 0
* Range is limited from -12000 to 8000 */
if(tc <= -32768.)
{
return (fluid_real_t) 0.0;
};
if(tc < -12000.)
{
tc = (fluid_real_t) -12000.0;
};
if(tc > 8000.)
{
tc = (fluid_real_t) 8000.0;
};
return (fluid_real_t) pow(2.0, (double) tc / 1200.0);
}
/*
@ -231,8 +263,8 @@ fluid_tc2sec_attack(fluid_real_t tc)
fluid_real_t
fluid_tc2sec(fluid_real_t tc)
{
/* No range checking here! */
return (fluid_real_t) pow(2.0, (double) tc / 1200.0);
/* No range checking here! */
return (fluid_real_t) pow(2.0, (double) tc / 1200.0);
}
/*
@ -241,14 +273,26 @@ fluid_tc2sec(fluid_real_t tc)
fluid_real_t
fluid_tc2sec_release(fluid_real_t tc)
{
/* SF2.01 section 8.1.2 items 30, 38
* SF2.01 section 8.1.3 items 30, 38
* No 'most negative number' rule here!
* Range is limited from -12000 to 8000 */
if (tc<=-32768.){return (fluid_real_t) 0.0;};
if (tc<-12000.){tc=(fluid_real_t) -12000.0;};
if (tc>8000.){tc=(fluid_real_t) 8000.0;};
return (fluid_real_t) pow(2.0, (double) tc / 1200.0);
/* SF2.01 section 8.1.2 items 30, 38
* SF2.01 section 8.1.3 items 30, 38
* No 'most negative number' rule here!
* Range is limited from -12000 to 8000 */
if(tc <= -32768.)
{
return (fluid_real_t) 0.0;
};
if(tc < -12000.)
{
tc = (fluid_real_t) -12000.0;
};
if(tc > 8000.)
{
tc = (fluid_real_t) 8000.0;
};
return (fluid_real_t) pow(2.0, (double) tc / 1200.0);
}
/*
@ -259,7 +303,7 @@ fluid_tc2sec_release(fluid_real_t tc)
fluid_real_t
fluid_act2hz(fluid_real_t c)
{
return (fluid_real_t) (8.176 * pow(2.0, (double) c / 1200.0));
return (fluid_real_t)(8.176 * pow(2.0, (double) c / 1200.0));
}
/*
@ -270,7 +314,7 @@ fluid_act2hz(fluid_real_t c)
fluid_real_t
fluid_hz2ct(fluid_real_t f)
{
return (fluid_real_t) (6900 + 1200 * log(f / 440.0) / log(2.0));
return (fluid_real_t)(6900 + 1200 * log(f / 440.0) / M_LN2);
}
/*
@ -279,16 +323,53 @@ fluid_hz2ct(fluid_real_t f)
fluid_real_t
fluid_pan(fluid_real_t c, int left)
{
if (left) {
c = -c;
}
if (c < -500) {
return (fluid_real_t) 0.0;
} else if (c > 500) {
return (fluid_real_t) 1.0;
} else {
return fluid_pan_tab[(int) (c + 500)];
}
if(left)
{
c = -c;
}
if(c <= -500)
{
return (fluid_real_t) 0.0;
}
else if(c >= 500)
{
return (fluid_real_t) 1.0;
}
else
{
return fluid_pan_tab[(int)(c + 500)];
}
}
/*
* Return the amount of attenuation based on the balance for the specified
* channel. If balance is negative (turned toward left channel, only the right
* channel is attenuated. If balance is positive, only the left channel is
* attenuated.
*
* @params balance left/right balance, range [-960;960] in absolute centibels
* @return amount of attenuation [0.0;1.0]
*/
fluid_real_t fluid_balance(fluid_real_t balance, int left)
{
/* This is the most common case */
if(balance == 0)
{
return 1.0f;
}
if((left && balance < 0) || (!left && balance > 0))
{
return 1.0f;
}
if(balance < 0)
{
balance = -balance;
}
return fluid_cb2amp(balance);
}
/*
@ -297,12 +378,16 @@ fluid_pan(fluid_real_t c, int left)
fluid_real_t
fluid_concave(fluid_real_t val)
{
if (val < 0) {
return 0;
} else if (val > 127) {
return 1;
}
return fluid_concave_tab[(int) val];
if(val < 0)
{
return 0;
}
else if(val >= FLUID_VEL_CB_SIZE)
{
return 1;
}
return fluid_concave_tab[(int) val];
}
/*
@ -311,10 +396,14 @@ fluid_concave(fluid_real_t val)
fluid_real_t
fluid_convex(fluid_real_t val)
{
if (val < 0) {
return 0;
} else if (val > 127) {
return 1;
}
return fluid_convex_tab[(int) val];
if(val < 0)
{
return 0;
}
else if(val >= FLUID_VEL_CB_SIZE)
{
return 1;
}
return fluid_convex_tab[(int) val];
}