ALSA backend: raw midi prototype

This commit is contained in:
Robin Gareus 2014-06-02 16:52:07 +02:00 committed by Paul Davis
parent c90428b5b8
commit 78d967d48c
5 changed files with 733 additions and 16 deletions

View file

@ -26,6 +26,7 @@
#include "alsa_audiobackend.h"
#include "rt_thread.h"
#include "pbd/compose.h"
#include "pbd/error.h"
#include "ardour/port_manager.h"
#include "i18n.h"
@ -48,8 +49,6 @@ AlsaAudioBackend::AlsaAudioBackend (AudioEngine& e, AudioBackendInfo& info)
, _dsp_load (0)
, _n_inputs (0)
, _n_outputs (0)
, _n_midi_inputs (0)
, _n_midi_outputs (0)
, _systemic_input_latency (0)
, _systemic_output_latency (0)
, _processed_samples (0)
@ -273,24 +272,49 @@ AlsaAudioBackend::systemic_output_latency () const
}
/* MIDI */
void
AlsaAudioBackend::enumerate_midi_devices (std::vector<std::string> &m) const
{
int cardnum = -1;
while (snd_card_next (&cardnum) >= 0 && cardnum >= 0) {
snd_ctl_t *handle;
std::string devname = "hw:";
devname += PBD::to_string (cardnum, std::dec);
if (snd_ctl_open (&handle, devname.c_str(), 0) >= 0) {
int device = -1;
// TODO iterate over sub-devices
if (snd_ctl_rawmidi_next_device (handle, &device) >= 0 && device >= 0) {
m.push_back (devname);
}
snd_ctl_close(handle);
}
}
}
std::vector<std::string>
AlsaAudioBackend::enumerate_midi_options () const
{
std::vector<std::string> m;
m.push_back (_("-None-"));
enumerate_midi_devices(m);
if (m.size() > 2) {
m.push_back (_("-All-"));
}
return m;
}
int
AlsaAudioBackend::set_midi_option (const std::string& /* opt*/)
AlsaAudioBackend::set_midi_option (const std::string& opt)
{
return -1;
_midi_device = opt;
return 0;
}
std::string
AlsaAudioBackend::midi_option () const
{
return "";
return _midi_device;
}
/* State Control */
@ -315,9 +339,13 @@ AlsaAudioBackend::_start (bool for_latency_measurement)
PBD::warning << _("AlsaAudioBackend: recovering from unclean shutdown, port registry is not empty.") << endmsg;
_system_inputs.clear();
_system_outputs.clear();
_system_midi_in.clear();
_system_midi_out.clear();
_ports.clear();
}
assert(_rmidi_in.size() == 0);
assert(_rmidi_out.size() == 0);
assert(_pcmi == 0);
_pcmi = new Alsa_pcmi (_capture_device.c_str(), _playback_device.c_str(), 0, _samplerate, _samples_per_period, _periods_per_cycle, 0);
@ -365,7 +393,9 @@ AlsaAudioBackend::_start (bool for_latency_measurement)
_systemic_output_latency = 0;
}
if (register_system_ports()) {
register_system_midi_ports();
if (register_system_audio_ports()) {
PBD::error << _("AlsaAudioBackend: failed to register system ports.") << endmsg;
delete _pcmi; _pcmi = 0;
return -1;
@ -418,6 +448,20 @@ AlsaAudioBackend::stop ()
PBD::error << _("AlsaAudioBackend: failed to terminate.") << endmsg;
return -1;
}
while (!_rmidi_out.empty ()) {
AlsaRawMidiIO *m = _rmidi_out.back ();
m->stop();
_rmidi_out.pop_back ();
delete m;
}
while (!_rmidi_in.empty ()) {
AlsaRawMidiIO *m = _rmidi_in.back ();
m->stop();
_rmidi_in.pop_back ();
delete m;
}
unregister_system_ports();
delete _pcmi; _pcmi = 0;
return 0;
@ -694,14 +738,12 @@ AlsaAudioBackend::unregister_port (PortEngine::PortHandle port_handle)
}
int
AlsaAudioBackend::register_system_ports()
AlsaAudioBackend::register_system_audio_ports()
{
LatencyRange lr;
const int a_ins = _n_inputs > 0 ? _n_inputs : 2;
const int a_out = _n_outputs > 0 ? _n_outputs : 2;
const int m_ins = _n_midi_inputs > 0 ? _n_midi_inputs : 2;
const int m_out = _n_midi_outputs > 0 ? _n_midi_outputs : 2;
/* audio ports */
lr.min = lr.max = _samples_per_period * _periods_per_cycle + _systemic_input_latency;
@ -723,8 +765,68 @@ AlsaAudioBackend::register_system_ports()
set_latency_range (p, false, lr);
_system_outputs.push_back(static_cast<AlsaPort*>(p));
}
return 0;
}
int
AlsaAudioBackend::register_system_midi_ports()
{
LatencyRange lr;
std::vector<std::string> devices;
if (_midi_device == _("-None-")) {
return 0;
}
else if (_midi_device == _("-All-")) {
enumerate_midi_devices(devices);
} else {
devices.push_back(_midi_device);
}
for (std::vector<std::string>::const_iterator i = devices.begin (); i != devices.end (); ++i) {
AlsaRawMidiOut *mout = new AlsaRawMidiOut (i->c_str());
if (mout->state ()) {
PBD::warning << string_compose (
_("AlsaRawMidiOut: failed to open midi device '%1'."), *i)
<< endmsg;
delete mout;
} else {
mout->setup_timing(_samples_per_period, _samplerate);
mout->sync_time (g_get_monotonic_time());
if (mout->start ()) {
PBD::warning << string_compose (
_("AlsaRawMidiOut: failed to start midi device '%1'."), *i)
<< endmsg;
delete mout;
} else {
_rmidi_out.push_back (mout);
}
}
AlsaRawMidiIn *midin = new AlsaRawMidiIn (i->c_str());
if (midin->state ()) {
PBD::warning << string_compose (
_("AlsaRawMidiIn: failed to open midi device '%1'."), *i)
<< endmsg;
delete midin;
} else {
midin->setup_timing(_samples_per_period, _samplerate);
midin->sync_time (g_get_monotonic_time());
if (midin->start ()) {
PBD::warning << string_compose (
_("AlsaRawMidiIn: failed to start midi device '%1'."), *i)
<< endmsg;
delete midin;
} else {
_rmidi_in.push_back (midin);
}
}
}
const int m_ins = _rmidi_in.size();
const int m_out = _rmidi_out.size();
/* midi ports */
lr.min = lr.max = _samples_per_period + _systemic_input_latency;
for (int i = 1; i <= m_ins; ++i) {
char tmp[64];
@ -732,6 +834,7 @@ AlsaAudioBackend::register_system_ports()
PortHandle p = add_port(std::string(tmp), DataType::MIDI, static_cast<PortFlags>(IsOutput | IsPhysical | IsTerminal));
if (!p) return -1;
set_latency_range (p, false, lr);
_system_midi_in.push_back(static_cast<AlsaPort*>(p));
}
lr.min = lr.max = _samples_per_period + _systemic_output_latency;
@ -741,6 +844,7 @@ AlsaAudioBackend::register_system_ports()
PortHandle p = add_port(std::string(tmp), DataType::MIDI, static_cast<PortFlags>(IsInput | IsPhysical | IsTerminal));
if (!p) return -1;
set_latency_range (p, false, lr);
_system_midi_out.push_back(static_cast<AlsaPort*>(p));
}
return 0;
@ -752,6 +856,8 @@ AlsaAudioBackend::unregister_system_ports()
size_t i = 0;
_system_inputs.clear();
_system_outputs.clear();
_system_midi_in.clear();
_system_midi_out.clear();
while (i < _ports.size ()) {
AlsaPort* port = _ports[i];
if (port->is_physical () && port->is_terminal ()) {
@ -1110,6 +1216,23 @@ AlsaAudioBackend::main_process_thread ()
}
_pcmi->capt_done (_samples_per_period);
/* de-queue midi*/
i = 0;
for (std::vector<AlsaPort*>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it, ++i) {
assert (_rmidi_in.size() > i);
AlsaRawMidiIn *rm = static_cast<AlsaRawMidiIn*>(_rmidi_in.at(i));
void *bptr = (*it)->get_buffer(0);
pframes_t time;
uint8_t data[64]; // match MaxAlsaRawEventSize in alsa_rawmidi.cc
size_t size = sizeof(data);
midi_clear(bptr);
while (rm->recv_event (time, data, size)) {
midi_event_put(bptr, time, data, size);
size = sizeof(data);
}
rm->sync_time (clock1);
}
for (std::vector<AlsaPort*>::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it) {
memset ((*it)->get_buffer (_samples_per_period), 0, _samples_per_period * sizeof (Sample));
}
@ -1119,6 +1242,18 @@ AlsaAudioBackend::main_process_thread ()
return 0;
}
/* queue midi*/
i = 0;
for (std::vector<AlsaPort*>::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it, ++i) {
assert (_rmidi_out.size() > i);
AlsaRawMidiOut *rm = static_cast<AlsaRawMidiOut*>(_rmidi_out.at(i));
const AlsaMidiBuffer *src = static_cast<const AlsaMidiBuffer*>((*it)->get_buffer(0));
rm->sync_time (clock1); // ?? use clock pre DSP load?
for (AlsaMidiBuffer::const_iterator mit = src->begin (); mit != src->end (); ++mit) {
rm->send_event ((*mit)->timestamp(), (*mit)->data(), (*mit)->size());
}
}
/* write back audio */
i = 0;
_pcmi->play_init (_samples_per_period);
@ -1151,6 +1286,10 @@ AlsaAudioBackend::main_process_thread ()
for (std::vector<AlsaPort*>::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) {
memset ((*it)->get_buffer (_samples_per_period), 0, _samples_per_period * sizeof (Sample));
}
for (std::vector<AlsaPort*>::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) {
static_cast<AlsaMidiBuffer*>((*it)->get_buffer(0))->clear ();
}
if (engine.process_callback (_samples_per_period)) {
_pcmi->pcm_stop ();
return 0;

View file

@ -34,6 +34,7 @@
#include "ardour/audio_backend.h"
#include "zita-alsa-pcmi.h"
#include "alsa_rawmidi.h"
namespace ARDOUR {
@ -282,8 +283,10 @@ class AlsaAudioBackend : public AudioBackend {
bool _running;
bool _freewheeling;
void enumerate_midi_devices (std::vector<std::string> &) const;
std::string _capture_device;
std::string _playback_device;
std::string _midi_device;
float _samplerate;
size_t _samples_per_period;
@ -294,9 +297,6 @@ class AlsaAudioBackend : public AudioBackend {
uint32_t _n_inputs;
uint32_t _n_outputs;
uint32_t _n_midi_inputs;
uint32_t _n_midi_outputs;
uint32_t _systemic_input_latency;
uint32_t _systemic_output_latency;
@ -319,13 +319,18 @@ class AlsaAudioBackend : public AudioBackend {
/* port engine */
PortHandle add_port (const std::string& shortname, ARDOUR::DataType, ARDOUR::PortFlags);
int register_system_ports ();
int register_system_audio_ports ();
int register_system_midi_ports ();
void unregister_system_ports ();
std::vector<AlsaPort *> _ports;
std::vector<AlsaPort*> _system_inputs;
std::vector<AlsaPort*> _system_outputs;
std::vector<AlsaPort *> _system_inputs;
std::vector<AlsaPort *> _system_outputs;
std::vector<AlsaPort *> _system_midi_in;
std::vector<AlsaPort *> _system_midi_out;
std::vector<AlsaRawMidiOut *> _rmidi_out;
std::vector<AlsaRawMidiIn *> _rmidi_in;
struct PortConnectData {
std::string a;

View file

@ -0,0 +1,472 @@
/*
* Copyright (C) 2014 Robin Gareus <robin@gareus.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <unistd.h>
#include <glibmm.h>
#include "alsa_rawmidi.h"
#include "rt_thread.h"
#include "pbd/error.h"
#include "i18n.h"
using namespace ARDOUR;
/* max bytes per individual midi-event
* events larger than this are ignored */
#define MaxAlsaRawEventSize (64)
#ifndef NDEBUG
#define _DEBUGPRINT(STR) fprintf(stderr, STR);
#else
#define _DEBUGPRINT(STR) ;
#endif
AlsaRawMidiIO::AlsaRawMidiIO (const char *device, const bool input)
: _state (-1)
, _running (false)
, _device (0)
, _pfds (0)
, _sample_length_us (1e6 / 48000.0)
, _period_length_us (1.024e6 / 48000.0)
, _samples_per_period (1024)
, _rb (0)
{
pthread_mutex_init (&_notify_mutex, 0);
pthread_cond_init (&_notify_ready, 0);
init (device, input);
}
AlsaRawMidiIO::~AlsaRawMidiIO ()
{
if (_device) {
snd_rawmidi_close (_device);
_device = 0;
}
delete _rb;
pthread_mutex_destroy (&_notify_mutex);
pthread_cond_destroy (&_notify_ready);
free (_pfds);
}
void
AlsaRawMidiIO::init (const char *device_name, const bool input)
{
if (snd_rawmidi_open (
input ? &_device : NULL,
input ? NULL : &_device,
device_name, SND_RAWMIDI_NONBLOCK) < 0) {
return;
}
_npfds = snd_rawmidi_poll_descriptors_count (_device);
if (_npfds < 1) {
_DEBUGPRINT("AlsaRawMidiIO: no poll descriptor(s).\n");
snd_rawmidi_close (_device);
_device = 0;
return;
}
_pfds = (struct pollfd*) malloc (_npfds * sizeof(struct pollfd));
snd_rawmidi_poll_descriptors (_device, _pfds, _npfds);
// MIDI (hw port) 31.25 kbaud
// worst case here is 8192 SPP and 8KSPS for which we'd need
// 4000 bytes sans MidiEventHeader.
// since we're not always in sync, let's use 4096.
_rb = new RingBuffer<uint8_t>(4096 + 4096 * sizeof(MidiEventHeader));
#if 0
_state = 0;
#else
snd_rawmidi_params_t *params;
if (snd_rawmidi_params_malloc (&params)) {
goto initerr;
}
if (snd_rawmidi_params_current (_device, params)) {
goto initerr;
}
if (snd_rawmidi_params_set_avail_min (_device, params, 1)) {
goto initerr;
}
if ( snd_rawmidi_params_set_buffer_size (_device, params, 64)) {
goto initerr;
}
if (snd_rawmidi_params_set_no_active_sensing (_device, params, 1)) {
goto initerr;
}
_state = 0;
return;
initerr:
_DEBUGPRINT("AlsaRawMidiIO: parameter setup error\n");
snd_rawmidi_close (_device);
_device = 0;
#endif
return;
}
static void * pthread_process (void *arg)
{
AlsaRawMidiIO *d = static_cast<AlsaRawMidiIO *>(arg);
d->main_process_thread ();
pthread_exit (0);
return 0;
}
int
AlsaRawMidiIO::start ()
{
if (_realtime_pthread_create (SCHED_FIFO, -19,
&_main_thread, pthread_process, this))
{
if (pthread_create (&_main_thread, NULL, pthread_process, this)) {
PBD::error << _("AlsaRawMidiIO: Failed to create process thread.") << endmsg;
return -1;
} else {
PBD::warning << _("AlsaRawMidiIO: Cannot acquire realtime permissions.") << endmsg;
}
}
int timeout = 5000;
while (!_running && --timeout > 0) { Glib::usleep (1000); }
if (timeout == 0 || !_running) {
return -1;
}
return 0;
}
int
AlsaRawMidiIO::stop ()
{
void *status;
if (!_running) {
return 0;
}
_running = false;
pthread_mutex_lock (&_notify_mutex);
pthread_cond_signal (&_notify_ready);
pthread_mutex_unlock (&_notify_mutex);
if (pthread_join (_main_thread, &status)) {
PBD::error << _("AlsaRawMidiIO: Failed to terminate.") << endmsg;
return -1;
}
return 0;
}
void
AlsaRawMidiIO::setup_timing (const size_t samples_per_period, const float samplerate)
{
_period_length_us = (double) samples_per_period * 1e6 / samplerate;
_sample_length_us = 1e6 / samplerate;
_samples_per_period = samples_per_period;
}
void
AlsaRawMidiIO::sync_time (const uint64_t tme)
{
// TODO consider a PLL, if this turns out to be the bottleneck for jitter
// also think about using
// snd_pcm_status_get_tstamp() and snd_rawmidi_status_get_tstamp()
// instead of monotonic clock.
#ifdef DEBUG_TIMING
double tdiff = (_clock_monotonic + _period_length_us - tme) / 1000.0;
if (abs(tdiff) >= .05) {
printf("AlsaRawMidiIO MJ: %.1f ms\n", tdiff);
}
#endif
_clock_monotonic = tme;
}
///////////////////////////////////////////////////////////////////////////////
// select sleeps _at most_ (compared to usleep() which sleeps at least)
static void select_sleep (uint32_t usec) {
if (usec <= 10) return;
fd_set fd;
int max_fd=0;
struct timeval tv;
tv.tv_sec = usec / 1000000;
tv.tv_usec = usec % 1000000;
FD_ZERO (&fd);
select (max_fd, &fd, NULL, NULL, &tv);
}
///////////////////////////////////////////////////////////////////////////////
AlsaRawMidiOut::AlsaRawMidiOut (const char *device)
: AlsaRawMidiIO (device, false)
{
}
int
AlsaRawMidiOut::send_event (const pframes_t time, const uint8_t *data, const size_t size)
{
const uint32_t buf_size = sizeof (MidiEventHeader) + size;
if (_rb->write_space() < buf_size) {
_DEBUGPRINT("AlsaRawMidiOut: ring buffer overflow\n");
return -1;
}
struct MidiEventHeader h (_clock_monotonic + time * _sample_length_us, size);
_rb->write ((uint8_t*) &h, sizeof(MidiEventHeader));
_rb->write (data, size);
if (pthread_mutex_trylock (&_notify_mutex) == 0) {
pthread_cond_signal (&_notify_ready);
pthread_mutex_unlock (&_notify_mutex);
}
return 0;
}
void *
AlsaRawMidiOut::main_process_thread ()
{
_running = true;
pthread_mutex_lock (&_notify_mutex);
while (_running) {
bool have_data = false;
struct MidiEventHeader h(0,0);
uint8_t data[MaxAlsaRawEventSize];
const uint32_t read_space = _rb->read_space();
if (read_space > sizeof(MidiEventHeader)) {
if (_rb->read ((uint8_t*)&h, sizeof(MidiEventHeader)) != sizeof(MidiEventHeader)) {
_DEBUGPRINT("AlsaRawMidiOut: Garbled MIDI EVENT HEADER!!\n");
break;
}
assert (read_space >= h.size);
if (h.size > MaxAlsaRawEventSize) {
_rb->increment_read_idx (h.size);
_DEBUGPRINT("AlsaRawMidiOut: MIDI event too large!\n");
continue;
}
if (_rb->read (&data[0], h.size) != h.size) {
_DEBUGPRINT("AlsaRawMidiOut: Garbled MIDI EVENT DATA!!\n");
break;
}
have_data = true;
}
if (!have_data) {
pthread_cond_wait (&_notify_ready, &_notify_mutex);
continue;
}
uint64_t now = g_get_monotonic_time();
while (h.time > now + 500) {
select_sleep(h.time - now);
now = g_get_monotonic_time();
}
retry:
int perr = poll (_pfds, _npfds, 10 /* ms */);
if (perr < 0) {
PBD::error << _("AlsaRawMidiOut: Error polling device. Terminating Midi Thread.") << endmsg;
break;
}
if (perr == 0) {
_DEBUGPRINT("AlsaRawMidiOut: poll() timed out.\n");
goto retry;
}
unsigned short revents = 0;
if (snd_rawmidi_poll_descriptors_revents (_device, _pfds, _npfds, &revents)) {
PBD::error << _("AlsaRawMidiOut: Failed to poll device. Terminating Midi Thread.") << endmsg;
break;
}
if (revents & (POLLERR | POLLHUP | POLLNVAL)) {
PBD::error << _("AlsaRawMidiOut: poll error. Terminating Midi Thread.") << endmsg;
break;
}
if (!(revents & POLLOUT)) {
_DEBUGPRINT("AlsaRawMidiOut: POLLOUT not ready.\n");
select_sleep (1000);
goto retry;
}
ssize_t err = snd_rawmidi_write (_device, data, h.size);
if ((err == -EAGAIN) || (err == -EWOULDBLOCK)) {
select_sleep (1000);
goto retry;
}
if (err < 0) {
PBD::error << _("AlsaRawMidiOut: write failed. Terminating Midi Thread.") << endmsg;
break;
}
if ((size_t) err < h.size) {
_DEBUGPRINT("AlsaRawMidiOut: short write\n");
memmove(&data[0], &data[err], err);
h.size -= err;
goto retry;
}
snd_rawmidi_drain (_device);
}
pthread_mutex_unlock (&_notify_mutex);
_DEBUGPRINT("AlsaRawMidiOut: MIDI OUT THREAD STOPPED\n");
return 0;
}
///////////////////////////////////////////////////////////////////////////////
AlsaRawMidiIn::AlsaRawMidiIn (const char *device)
: AlsaRawMidiIO (device, true)
{
}
size_t
AlsaRawMidiIn::recv_event (pframes_t &time, uint8_t *data, size_t &size)
{
const uint32_t read_space = _rb->read_space();
struct MidiEventHeader h(0,0);
if (read_space <= sizeof(MidiEventHeader)) {
return 0;
}
#if 1
// check if event is in current cycle
RingBuffer<uint8_t>::rw_vector vector;
_rb->get_read_vector(&vector);
if (vector.len[0] >= sizeof(MidiEventHeader)) {
memcpy((uint8_t*)&h, vector.buf[0], sizeof(MidiEventHeader));
} else {
if (vector.len[0] > 0) {
memcpy ((uint8_t*)&h, vector.buf[0], vector.len[0]);
}
memcpy (((uint8_t*)&h) + vector.len[0], vector.buf[1], sizeof(MidiEventHeader) - vector.len[0]);
}
if (h.time >= _clock_monotonic + _period_length_us ) {
#ifdef DEBUG_TIMING
printf("AlsaRawMidiIn DEBUG: POSTPONE EVENT TO NEXT CYCLE: %.1f spl\n", ((h.time - _clock_monotonic) / _sample_length_us));
#endif
return 0;
}
_rb->increment_read_idx (sizeof(MidiEventHeader));
#else
if (_rb->read ((uint8_t*)&h, sizeof(MidiEventHeader)) != sizeof(MidiEventHeader)) {
_DEBUGPRINT("AlsaRawMidiIn::recv_event Garbled MIDI EVENT HEADER!!\n");
return 0;
}
#endif
assert (h.size > 0);
if (h.size > size) {
_DEBUGPRINT("AlsaRawMidiIn::recv_event MIDI event too large!\n");
_rb->increment_read_idx (h.size);
return 0;
}
if (_rb->read (&data[0], h.size) != h.size) {
_DEBUGPRINT("AlsaRawMidiIn::recv_event Garbled MIDI EVENT DATA!!\n");
return 0;
}
if (h.time < _clock_monotonic) {
#ifdef DEBUG_TIMING
printf("AlsaRawMidiIn DEBUG: MIDI TIME < 0 %.1f spl\n", ((_clock_monotonic - h.time) / -_sample_length_us));
#endif
time = 0;
} else if (h.time >= _clock_monotonic + _period_length_us ) {
#ifdef DEBUG_TIMING
printf("AlsaRawMidiIn DEBUG: MIDI TIME > PERIOD %.1f spl\n", ((h.time - _clock_monotonic) / _sample_length_us));
#endif
time = _samples_per_period - 1;
} else {
time = floor ((h.time - _clock_monotonic) / _sample_length_us);
}
assert(time < _samples_per_period);
size = h.size;
return h.size;
}
void *
AlsaRawMidiIn::main_process_thread ()
{
_running = true;
while (_running) {
unsigned short revents = 0;
int perr = poll (_pfds, _npfds, 100 /* ms */);
if (perr < 0) {
PBD::error << _("AlsaRawMidiIn: Error polling device. Terminating Midi Thread.") << endmsg;
break;
}
if (perr == 0) {
continue;
}
if (snd_rawmidi_poll_descriptors_revents (_device, _pfds, _npfds, &revents)) {
PBD::error << _("AlsaRawMidiIn: Failed to poll device. Terminating Midi Thread.") << endmsg;
break;
}
if (revents & (POLLERR | POLLHUP | POLLNVAL)) {
PBD::error << _("AlsaRawMidiIn: poll error. Terminating Midi Thread.") << endmsg;
break;
}
if (!(revents & POLLIN)) {
_DEBUGPRINT("AlsaRawMidiOut: POLLIN not ready.\n");
select_sleep (1000);
continue;
}
uint8_t data[MaxAlsaRawEventSize];
uint64_t time = g_get_monotonic_time();
ssize_t err = snd_rawmidi_read (_device, data, sizeof(data));
if ((err == -EAGAIN) || (err == -EWOULDBLOCK)) {
continue;
}
if (err < 0) {
PBD::error << _("AlsaRawMidiIn: read error. Terminating Midi") << endmsg;
break;
}
if (err == 0) {
_DEBUGPRINT("AlsaRawMidiIn: zero read\n");
continue;
}
if (!(data[0] & 0x80)) {
_DEBUGPRINT("AlsaRawMidiIn: invalid midi message.\n");
}
// TODO parse MIDI-events? break on status-bytes
{
ssize_t size = err;
const uint32_t buf_size = sizeof(MidiEventHeader) + size;
if (_rb->write_space() < buf_size) {
_DEBUGPRINT("AlsaRawMidiIn: ring buffer overflow\n");
continue;
}
struct MidiEventHeader h (time, size);
_rb->write ((uint8_t*) &h, sizeof(MidiEventHeader));
_rb->write (data, size);
}
}
_DEBUGPRINT("AlsaRawMidiIn: MIDI IN THREAD STOPPED\n");
return 0;
}

View file

@ -0,0 +1,100 @@
/*
* Copyright (C) 2014 Robin Gareus <robin@gareus.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef __libbackend_alsa_rawmidi_h__
#define __libbackend_alsa_rawmidi_h__
#include <stdint.h>
#include <poll.h>
#include <pthread.h>
#include <alsa/asoundlib.h>
#include "pbd/ringbuffer.h"
#include "ardour/types.h"
namespace ARDOUR {
class AlsaRawMidiIO {
public:
AlsaRawMidiIO (const char *device, const bool input);
virtual ~AlsaRawMidiIO ();
int state (void) const { return _state; }
int start ();
int stop ();
void setup_timing (const size_t samples_per_period, const float samplerate);
void sync_time(uint64_t);
virtual void* main_process_thread () = 0;
protected:
pthread_t _main_thread;
pthread_mutex_t _notify_mutex;
pthread_cond_t _notify_ready;
int _state;
bool _running;
snd_rawmidi_t *_device;
int _npfds;
struct pollfd *_pfds;
double _sample_length_us;
double _period_length_us;
size_t _samples_per_period;
uint64_t _clock_monotonic;
struct MidiEventHeader {
uint64_t time;
size_t size;
MidiEventHeader(const uint64_t t, const size_t s)
: time(t)
, size(s) {}
};
RingBuffer<uint8_t>* _rb;
private:
void init (const char *device_name, const bool input);
};
class AlsaRawMidiOut : public AlsaRawMidiIO
{
public:
AlsaRawMidiOut (const char *device);
void* main_process_thread ();
int send_event (const pframes_t, const uint8_t *, const size_t);
};
class AlsaRawMidiIn : public AlsaRawMidiIO
{
public:
AlsaRawMidiIn (const char *device);
void* main_process_thread ();
size_t recv_event (pframes_t &, uint8_t *, size_t &);
};
} // namespace
#endif

View file

@ -25,6 +25,7 @@ def build(bld):
obj = bld(features = 'cxx cxxshlib')
obj.source = [
'alsa_audiobackend.cc',
'alsa_rawmidi.cc',
'zita-alsa-pcmi.cc',
]
obj.includes = ['.']