virtual abstraction of Alsa Raw+Seq

This commit is contained in:
Robin Gareus 2014-06-21 13:51:46 +02:00
parent 5e436fc8fc
commit 6648074a13
10 changed files with 449 additions and 526 deletions

View file

@ -17,17 +17,20 @@
*/
#include <unistd.h>
#include <glibmm.h>
#include "select_sleep.h"
#include "alsa_sequencer.h"
#include "rt_thread.h"
#include "pbd/error.h"
#include "i18n.h"
using namespace ARDOUR;
/* max bytes per individual midi-event
* events larger than this are ignored */
#define MaxAlsaSeqEventSize (64)
#ifndef NDEBUG
#define _DEBUGPRINT(STR) fprintf(stderr, STR);
#else
@ -35,17 +38,9 @@ using namespace ARDOUR;
#endif
AlsaSeqMidiIO::AlsaSeqMidiIO (const char *device, const bool input)
: _state (-1)
, _running (false)
: AlsaMidiIO()
, _seq (0)
, _pfds (0)
, _sample_length_us (1e6 / 48000.0)
, _period_length_us (1.024e6 / 48000.0)
, _samples_per_period (1024)
, _rb (0)
{
pthread_mutex_init (&_notify_mutex, 0);
pthread_cond_init (&_notify_ready, 0);
init (device, input);
}
@ -55,10 +50,6 @@ AlsaSeqMidiIO::~AlsaSeqMidiIO ()
snd_seq_close (_seq);
_seq = 0;
}
delete _rb;
pthread_mutex_destroy (&_notify_mutex);
pthread_cond_destroy (&_notify_ready);
free (_pfds);
}
void
@ -102,24 +93,18 @@ AlsaSeqMidiIO::init (const char *device_name, const bool input)
if (input) {
if (snd_seq_connect_from (_seq, _port, port.client, port.port) < 0) {
_DEBUGPRINT("AlsaSeqMidiIO: cannot connect port.\n");
_DEBUGPRINT("AlsaSeqMidiIO: cannot connect input port.\n");
goto initerr;
}
} else {
if (snd_seq_connect_to (_seq, _port, port.client, port.port) < 0) {
_DEBUGPRINT("AlsaSeqMidiIO: cannot connect port.\n");
_DEBUGPRINT("AlsaSeqMidiIO: cannot connect output port.\n");
goto initerr;
}
}
snd_seq_nonblock(_seq, 1);
// MIDI (hw port) 31.25 kbaud
// worst case here is 8192 SPP and 8KSPS for which we'd need
// 4000 bytes sans MidiEventHeader.
// since we're not always in sync, let's use 4096.
_rb = new RingBuffer<uint8_t>(4096 + 4096 * sizeof(MidiEventHeader));
_state = 0;
return;
@ -130,123 +115,14 @@ initerr:
return;
}
static void * pthread_process (void *arg)
{
AlsaSeqMidiIO *d = static_cast<AlsaSeqMidiIO *>(arg);
d->main_process_thread ();
pthread_exit (0);
return 0;
}
int
AlsaSeqMidiIO::start ()
{
if (_realtime_pthread_create (SCHED_FIFO, -21, 100000,
&_main_thread, pthread_process, this))
{
if (pthread_create (&_main_thread, NULL, pthread_process, this)) {
PBD::error << _("AlsaSeqMidiIO: Failed to create process thread.") << endmsg;
return -1;
} else {
PBD::warning << _("AlsaSeqMidiIO: Cannot acquire realtime permissions.") << endmsg;
}
}
int timeout = 5000;
while (!_running && --timeout > 0) { Glib::usleep (1000); }
if (timeout == 0 || !_running) {
return -1;
}
return 0;
}
int
AlsaSeqMidiIO::stop ()
{
void *status;
if (!_running) {
return 0;
}
_running = false;
pthread_mutex_lock (&_notify_mutex);
pthread_cond_signal (&_notify_ready);
pthread_mutex_unlock (&_notify_mutex);
if (pthread_join (_main_thread, &status)) {
PBD::error << _("AlsaSeqMidiIO: Failed to terminate.") << endmsg;
return -1;
}
return 0;
}
void
AlsaSeqMidiIO::setup_timing (const size_t samples_per_period, const float samplerate)
{
_period_length_us = (double) samples_per_period * 1e6 / samplerate;
_sample_length_us = 1e6 / samplerate;
_samples_per_period = samples_per_period;
}
void
AlsaSeqMidiIO::sync_time (const uint64_t tme)
{
// TODO consider a PLL, if this turns out to be the bottleneck for jitter
// also think about using
// snd_pcm_status_get_tstamp() and snd_rawmidi_status_get_tstamp()
// instead of monotonic clock.
#ifdef DEBUG_TIMING
double tdiff = (_clock_monotonic + _period_length_us - tme) / 1000.0;
if (abs(tdiff) >= .05) {
printf("AlsaSeqMidiIO MJ: %.1f ms\n", tdiff);
}
#endif
_clock_monotonic = tme;
}
///////////////////////////////////////////////////////////////////////////////
// select sleeps _at most_ (compared to usleep() which sleeps at least)
static void select_sleep (uint32_t usec) {
if (usec <= 10) return;
fd_set fd;
int max_fd=0;
struct timeval tv;
tv.tv_sec = usec / 1000000;
tv.tv_usec = usec % 1000000;
FD_ZERO (&fd);
select (max_fd, &fd, NULL, NULL, &tv);
}
///////////////////////////////////////////////////////////////////////////////
AlsaSeqMidiOut::AlsaSeqMidiOut (const char *device)
: AlsaSeqMidiIO (device, false)
, AlsaMidiOut ()
{
}
int
AlsaSeqMidiOut::send_event (const pframes_t time, const uint8_t *data, const size_t size)
{
const uint32_t buf_size = sizeof (MidiEventHeader) + size;
if (_rb->write_space() < buf_size) {
_DEBUGPRINT("AlsaSeqMidiOut: ring buffer overflow\n");
return -1;
}
struct MidiEventHeader h (_clock_monotonic + time * _sample_length_us, size);
_rb->write ((uint8_t*) &h, sizeof(MidiEventHeader));
_rb->write (data, size);
if (pthread_mutex_trylock (&_notify_mutex) == 0) {
pthread_cond_signal (&_notify_ready);
pthread_mutex_unlock (&_notify_mutex);
}
return 0;
}
#define MaxAlsaSeqEventSize 64
void *
AlsaSeqMidiOut::main_process_thread ()
{
@ -353,90 +229,10 @@ retry:
AlsaSeqMidiIn::AlsaSeqMidiIn (const char *device)
: AlsaSeqMidiIO (device, true)
, AlsaMidiIn ()
{
}
size_t
AlsaSeqMidiIn::recv_event (pframes_t &time, uint8_t *data, size_t &size)
{
const uint32_t read_space = _rb->read_space();
struct MidiEventHeader h(0,0);
if (read_space <= sizeof(MidiEventHeader)) {
return 0;
}
#if 1
// check if event is in current cycle
RingBuffer<uint8_t>::rw_vector vector;
_rb->get_read_vector(&vector);
if (vector.len[0] >= sizeof(MidiEventHeader)) {
memcpy((uint8_t*)&h, vector.buf[0], sizeof(MidiEventHeader));
} else {
if (vector.len[0] > 0) {
memcpy ((uint8_t*)&h, vector.buf[0], vector.len[0]);
}
memcpy (((uint8_t*)&h) + vector.len[0], vector.buf[1], sizeof(MidiEventHeader) - vector.len[0]);
}
if (h.time >= _clock_monotonic + _period_length_us ) {
#ifdef DEBUG_TIMING
printf("AlsaSeqMidiIn DEBUG: POSTPONE EVENT TO NEXT CYCLE: %.1f spl\n", ((h.time - _clock_monotonic) / _sample_length_us));
#endif
return 0;
}
_rb->increment_read_idx (sizeof(MidiEventHeader));
#else
if (_rb->read ((uint8_t*)&h, sizeof(MidiEventHeader)) != sizeof(MidiEventHeader)) {
_DEBUGPRINT("AlsaSeqMidiIn::recv_event Garbled MIDI EVENT HEADER!!\n");
return 0;
}
#endif
assert (h.size > 0);
if (h.size > size) {
_DEBUGPRINT("AlsaSeqMidiIn::recv_event MIDI event too large!\n");
_rb->increment_read_idx (h.size);
return 0;
}
if (_rb->read (&data[0], h.size) != h.size) {
_DEBUGPRINT("AlsaSeqMidiIn::recv_event Garbled MIDI EVENT DATA!!\n");
return 0;
}
if (h.time < _clock_monotonic) {
#ifdef DEBUG_TIMING
printf("AlsaSeqMidiIn DEBUG: MIDI TIME < 0 %.1f spl\n", ((_clock_monotonic - h.time) / -_sample_length_us));
#endif
time = 0;
} else if (h.time >= _clock_monotonic + _period_length_us ) {
#ifdef DEBUG_TIMING
printf("AlsaSeqMidiIn DEBUG: MIDI TIME > PERIOD %.1f spl\n", ((h.time - _clock_monotonic) / _sample_length_us));
#endif
time = _samples_per_period - 1;
} else {
time = floor ((h.time - _clock_monotonic) / _sample_length_us);
}
assert(time < _samples_per_period);
size = h.size;
return h.size;
}
int
AlsaSeqMidiIn::queue_event (const uint64_t time, const uint8_t *data, const size_t size) {
const uint32_t buf_size = sizeof(MidiEventHeader) + size;
if (size == 0) {
return -1;
}
if (_rb->write_space() < buf_size) {
_DEBUGPRINT("AlsaSeqMidiIn: ring buffer overflow\n");
return -1;
}
struct MidiEventHeader h (time, size);
_rb->write ((uint8_t*) &h, sizeof(MidiEventHeader));
_rb->write (data, size);
return 0;
}
void *
AlsaSeqMidiIn::main_process_thread ()
{