mirror of
https://github.com/Ardour/ardour.git
synced 2025-12-09 16:24:57 +01:00
add queen mary DSP library
git-svn-id: svn://localhost/ardour2/branches/3.0@9029 d708f5d6-7413-0410-9779-e7cbd77b26cf
This commit is contained in:
parent
fa41cfef58
commit
3deba1921b
85 changed files with 69852 additions and 0 deletions
181
libs/qm-dsp/dsp/transforms/FFT.cpp
Normal file
181
libs/qm-dsp/dsp/transforms/FFT.cpp
Normal file
|
|
@ -0,0 +1,181 @@
|
|||
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
||||
|
||||
/*
|
||||
QM DSP Library
|
||||
|
||||
Centre for Digital Music, Queen Mary, University of London.
|
||||
This file is based on Don Cross's public domain FFT implementation.
|
||||
*/
|
||||
|
||||
#include "FFT.h"
|
||||
|
||||
#include "maths/MathUtilities.h"
|
||||
|
||||
#include <cmath>
|
||||
|
||||
#include <iostream>
|
||||
|
||||
FFT::FFT(unsigned int n) :
|
||||
m_n(n),
|
||||
m_private(0)
|
||||
{
|
||||
if( !MathUtilities::isPowerOfTwo(m_n) )
|
||||
{
|
||||
std::cerr << "ERROR: FFT: Non-power-of-two FFT size "
|
||||
<< m_n << " not supported in this implementation"
|
||||
<< std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
FFT::~FFT()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
FFTReal::FFTReal(unsigned int n) :
|
||||
m_n(n),
|
||||
m_private_real(0)
|
||||
{
|
||||
m_private_real = new FFT(m_n);
|
||||
}
|
||||
|
||||
FFTReal::~FFTReal()
|
||||
{
|
||||
delete (FFT *)m_private_real;
|
||||
}
|
||||
|
||||
void
|
||||
FFTReal::process(bool inverse,
|
||||
const double *realIn,
|
||||
double *realOut, double *imagOut)
|
||||
{
|
||||
((FFT *)m_private_real)->process(inverse, realIn, 0, realOut, imagOut);
|
||||
}
|
||||
|
||||
static unsigned int numberOfBitsNeeded(unsigned int p_nSamples)
|
||||
{
|
||||
int i;
|
||||
|
||||
if( p_nSamples < 2 )
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
for ( i=0; ; i++ )
|
||||
{
|
||||
if( p_nSamples & (1 << i) ) return i;
|
||||
}
|
||||
}
|
||||
|
||||
static unsigned int reverseBits(unsigned int p_nIndex, unsigned int p_nBits)
|
||||
{
|
||||
unsigned int i, rev;
|
||||
|
||||
for(i=rev=0; i < p_nBits; i++)
|
||||
{
|
||||
rev = (rev << 1) | (p_nIndex & 1);
|
||||
p_nIndex >>= 1;
|
||||
}
|
||||
|
||||
return rev;
|
||||
}
|
||||
|
||||
void
|
||||
FFT::process(bool p_bInverseTransform,
|
||||
const double *p_lpRealIn, const double *p_lpImagIn,
|
||||
double *p_lpRealOut, double *p_lpImagOut)
|
||||
{
|
||||
if (!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;
|
||||
|
||||
// std::cerr << "FFT::process(" << m_n << "," << p_bInverseTransform << ")" << std::endl;
|
||||
|
||||
unsigned int NumBits;
|
||||
unsigned int i, j, k, n;
|
||||
unsigned int BlockSize, BlockEnd;
|
||||
|
||||
double angle_numerator = 2.0 * M_PI;
|
||||
double tr, ti;
|
||||
|
||||
if( !MathUtilities::isPowerOfTwo(m_n) )
|
||||
{
|
||||
std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size "
|
||||
<< m_n << " not supported in this implementation"
|
||||
<< std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
if( p_bInverseTransform ) angle_numerator = -angle_numerator;
|
||||
|
||||
NumBits = numberOfBitsNeeded ( m_n );
|
||||
|
||||
|
||||
for( i=0; i < m_n; i++ )
|
||||
{
|
||||
j = reverseBits ( i, NumBits );
|
||||
p_lpRealOut[j] = p_lpRealIn[i];
|
||||
p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i];
|
||||
}
|
||||
|
||||
|
||||
BlockEnd = 1;
|
||||
for( BlockSize = 2; BlockSize <= m_n; BlockSize <<= 1 )
|
||||
{
|
||||
double delta_angle = angle_numerator / (double)BlockSize;
|
||||
double sm2 = -sin ( -2 * delta_angle );
|
||||
double sm1 = -sin ( -delta_angle );
|
||||
double cm2 = cos ( -2 * delta_angle );
|
||||
double cm1 = cos ( -delta_angle );
|
||||
double w = 2 * cm1;
|
||||
double ar[3], ai[3];
|
||||
|
||||
for( i=0; i < m_n; i += BlockSize )
|
||||
{
|
||||
|
||||
ar[2] = cm2;
|
||||
ar[1] = cm1;
|
||||
|
||||
ai[2] = sm2;
|
||||
ai[1] = sm1;
|
||||
|
||||
for ( j=i, n=0; n < BlockEnd; j++, n++ )
|
||||
{
|
||||
|
||||
ar[0] = w*ar[1] - ar[2];
|
||||
ar[2] = ar[1];
|
||||
ar[1] = ar[0];
|
||||
|
||||
ai[0] = w*ai[1] - ai[2];
|
||||
ai[2] = ai[1];
|
||||
ai[1] = ai[0];
|
||||
|
||||
k = j + BlockEnd;
|
||||
tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
|
||||
ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];
|
||||
|
||||
p_lpRealOut[k] = p_lpRealOut[j] - tr;
|
||||
p_lpImagOut[k] = p_lpImagOut[j] - ti;
|
||||
|
||||
p_lpRealOut[j] += tr;
|
||||
p_lpImagOut[j] += ti;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
BlockEnd = BlockSize;
|
||||
|
||||
}
|
||||
|
||||
|
||||
if( p_bInverseTransform )
|
||||
{
|
||||
double denom = (double)m_n;
|
||||
|
||||
for ( i=0; i < m_n; i++ )
|
||||
{
|
||||
p_lpRealOut[i] /= denom;
|
||||
p_lpImagOut[i] /= denom;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Loading…
Add table
Add a link
Reference in a new issue