NO-OP: clang format

This commit is contained in:
Robin Gareus 2022-11-03 00:27:34 +01:00
parent edc19e2b7d
commit 2b0e6ec476
No known key found for this signature in database
GPG key ID: A090BCE02CF57F04

View file

@ -18,18 +18,18 @@
*/ */
#include <algorithm> #include <algorithm>
#include <stdlib.h>
#include <cmath>
#include <boost/math/special_functions/fpclassify.hpp> #include <boost/math/special_functions/fpclassify.hpp>
#include <cmath>
#include <stdlib.h>
#include "ardour/dB.h"
#include "ardour/buffer.h" #include "ardour/buffer.h"
#include "ardour/dB.h"
#include "ardour/dsp_filter.h" #include "ardour/dsp_filter.h"
#include "ardour/runtime_functions.h" #include "ardour/runtime_functions.h"
#ifdef COMPILER_MSVC #ifdef COMPILER_MSVC
#include <float.h> #include <float.h>
#define isfinite_local(val) (bool)_finite((double)val) #define isfinite_local(val) (bool)_finite ((double)val)
#else #else
#define isfinite_local std::isfinite #define isfinite_local std::isfinite
#endif #endif
@ -41,36 +41,43 @@
using namespace ARDOUR::DSP; using namespace ARDOUR::DSP;
void void
ARDOUR::DSP::memset (float *data, const float val, const uint32_t n_samples) { ARDOUR::DSP::memset (float* data, const float val, const uint32_t n_samples)
{
for (uint32_t i = 0; i < n_samples; ++i) { for (uint32_t i = 0; i < n_samples; ++i) {
data[i] = val; data[i] = val;
} }
} }
void void
ARDOUR::DSP::mmult (float *data, float *mult, const uint32_t n_samples) { ARDOUR::DSP::mmult (float* data, float* mult, const uint32_t n_samples)
{
for (uint32_t i = 0; i < n_samples; ++i) { for (uint32_t i = 0; i < n_samples; ++i) {
data[i] *= mult[i]; data[i] *= mult[i];
} }
} }
float float
ARDOUR::DSP::log_meter (float power) { ARDOUR::DSP::log_meter (float power)
{
// compare to libs/ardour/log_meter.h // compare to libs/ardour/log_meter.h
static const float lower_db = -192.f; static const float lower_db = -192.f;
static const float upper_db = 0.f; static const float upper_db = 0.f;
static const float non_linearity = 8.0; static const float non_linearity = 8.0;
return (power < lower_db ? 0.0 : powf ((power - lower_db) / (upper_db - lower_db), non_linearity)); return (power < lower_db ? 0.0 : powf ((power - lower_db) / (upper_db - lower_db), non_linearity));
} }
float float
ARDOUR::DSP::log_meter_coeff (float coeff) { ARDOUR::DSP::log_meter_coeff (float coeff)
if (coeff <= 0) return 0; {
if (coeff <= 0) {
return 0;
}
return log_meter (fast_coefficient_to_dB (coeff)); return log_meter (fast_coefficient_to_dB (coeff));
} }
void void
ARDOUR::DSP::peaks (const float *data, float &min, float &max, uint32_t n_samples) { ARDOUR::DSP::peaks (const float* data, float& min, float& max, uint32_t n_samples)
{
ARDOUR::find_peaks (data, n_samples, &min, &max); ARDOUR::find_peaks (data, n_samples, &min, &max);
} }
@ -83,9 +90,9 @@ ARDOUR::DSP::process_map (BufferSet* bufs, const ChanCount& n_out, const ChanMap
* This just fills output buffers, forwarding inputs as needed: * This just fills output buffers, forwarding inputs as needed:
* Input -> plugin-sink == plugin-src -> Output * Input -> plugin-sink == plugin-src -> Output
*/ */
for (DataType::iterator t = DataType::begin(); t != DataType::end(); ++t) { for (DataType::iterator t = DataType::begin (); t != DataType::end (); ++t) {
for (uint32_t out = 0; out < n_out.get (*t); ++out) { for (uint32_t out = 0; out < n_out.get (*t); ++out) {
bool valid; bool valid;
uint32_t out_idx = out_map.get (*t, out, &valid); uint32_t out_idx = out_map.get (*t, out, &valid);
if (!valid) { if (!valid) {
continue; continue;
@ -116,26 +123,29 @@ LowPass::set_cutoff (float freq)
} }
void void
LowPass::proc (float *data, const uint32_t n_samples) LowPass::proc (float* data, const uint32_t n_samples)
{ {
// localize variables // localize variables
const float a = _a; const float a = _a;
float z = _z; float z = _z;
for (uint32_t i = 0; i < n_samples; ++i) { for (uint32_t i = 0; i < n_samples; ++i) {
data[i] += a * (data[i] - z); data[i] += a * (data[i] - z);
z = data[i]; z = data[i];
} }
_z = z; _z = z;
if (!isfinite_local (_z)) { _z = 0; } if (!isfinite_local (_z)) {
else if (!boost::math::isnormal (_z)) { _z = 0; } _z = 0;
} else if (!boost::math::isnormal (_z)) {
_z = 0;
}
} }
void void
LowPass::ctrl (float *data, const float val, const uint32_t n_samples) LowPass::ctrl (float* data, const float val, const uint32_t n_samples)
{ {
// localize variables // localize variables
const float a = _a; const float a = _a;
float z = _z; float z = _z;
for (uint32_t i = 0; i < n_samples; ++i) { for (uint32_t i = 0; i < n_samples; ++i) {
data[i] += a * (val - z); data[i] += a * (val - z);
z = data[i]; z = data[i];
@ -157,7 +167,7 @@ Biquad::Biquad (double samplerate)
{ {
} }
Biquad::Biquad (const Biquad &other) Biquad::Biquad (const Biquad& other)
: _rate (other._rate) : _rate (other._rate)
, _z1 (0.0) , _z1 (0.0)
, _z2 (0.0) , _z2 (0.0)
@ -170,20 +180,26 @@ Biquad::Biquad (const Biquad &other)
} }
void void
Biquad::run (float *data, const uint32_t n_samples) Biquad::run (float* data, const uint32_t n_samples)
{ {
for (uint32_t i = 0; i < n_samples; ++i) { for (uint32_t i = 0; i < n_samples; ++i) {
const float xn = data[i]; const float xn = data[i];
const float z = _b0 * xn + _z1; const float z = _b0 * xn + _z1;
_z1 = _b1 * xn - _a1 * z + _z2; _z1 = _b1 * xn - _a1 * z + _z2;
_z2 = _b2 * xn - _a2 * z; _z2 = _b2 * xn - _a2 * z;
data[i] = z; data[i] = z;
} }
if (!isfinite_local (_z1)) { _z1 = 0; } if (!isfinite_local (_z1)) {
else if (!boost::math::isnormal (_z1)) { _z1 = 0; } _z1 = 0;
if (!isfinite_local (_z2)) { _z2 = 0; } } else if (!boost::math::isnormal (_z1)) {
else if (!boost::math::isnormal (_z2)) { _z2 = 0; } _z1 = 0;
}
if (!isfinite_local (_z2)) {
_z2 = 0;
} else if (!boost::math::isnormal (_z2)) {
_z2 = 0;
}
} }
void void
@ -216,8 +232,8 @@ Biquad::set_vicanek_poles (const double W0, const double Q, const double A)
_a2 = exp (-.5 * W0 / (A * Q)); _a2 = exp (-.5 * W0 / (A * Q));
_a1 = p <= 1. _a1 = p <= 1.
? -2 * _a2 * cos (W0 * sqrt (1 - p)) ? -2 * _a2 * cos (W0 * sqrt (1 - p))
: -2 * _a2 * cosh (W0 * sqrt (p - 1)); : -2 * _a2 * cosh (W0 * sqrt (p - 1));
_a2 = _a2 * _a2; _a2 = _a2 * _a2;
} }
@ -225,11 +241,11 @@ void
Biquad::calc_vicanek (const double W0, double& A0, double& A1, double& A2, double& phi0, double& phi1, double& phi2) Biquad::calc_vicanek (const double W0, double& A0, double& A1, double& A2, double& phi0, double& phi1, double& phi2)
{ {
#define SQR(x) ((x) * (x)) #define SQR(x) ((x) * (x))
A0 = SQR(1. + _a1 + _a2); A0 = SQR (1. + _a1 + _a2);
A1 = SQR(1. - _a1 + _a2); A1 = SQR (1. - _a1 + _a2);
A2 = -4 * _a2; A2 = -4 * _a2;
phi1 = SQR(sin (.5 * W0)); phi1 = SQR (sin (.5 * W0));
phi0 = 1.0 - phi1; phi0 = 1.0 - phi1;
phi2 = 4 * phi0 * phi1; phi2 = 4 * phi0 * phi1;
#undef SQR #undef SQR
@ -238,15 +254,21 @@ Biquad::calc_vicanek (const double W0, double& A0, double& A1, double& A2, doubl
void void
Biquad::compute (Type type, double freq, double Q, double gain) Biquad::compute (Type type, double freq, double Q, double gain)
{ {
if (Q <= .001) { Q = 0.001; } if (Q <= .001) {
if (freq <= 1.) { freq = 1.; } Q = 0.001;
if (freq >= 0.4998 * _rate) { freq = 0.4998 * _rate; } }
if (freq <= 1.) {
freq = 1.;
}
if (freq >= 0.4998 * _rate) {
freq = 0.4998 * _rate;
}
/* Compute biquad filter settings. /* Compute biquad filter settings.
* Based on 'Cookbook formulae for audio EQ biquad filter coefficents' * Based on 'Cookbook formulae for audio EQ biquad filter coefficents'
* by Robert Bristow-Johnson * by Robert Bristow-Johnson
*/ */
const double A = pow (10.0, (gain / 40.0)); const double A = pow (10.0, (gain / 40.0));
const double W0 = (2.0 * M_PI * freq) / _rate; const double W0 = (2.0 * M_PI * freq) / _rate;
const double sinW0 = sin (W0); const double sinW0 = sin (W0);
@ -359,21 +381,21 @@ Biquad::compute (Type type, double freq, double Q, double gain)
const double B1 = ((A0 * phi0 + A1 * phi1 + A2 * phi2) * Q * Q - A0 * phi0) / phi1; const double B1 = ((A0 * phi0 + A1 * phi1 + A2 * phi2) * Q * Q - A0 * phi0) / phi1;
_b0 = .5 * (B0_2 + sqrt (B1)); _b0 = .5 * (B0_2 + sqrt (B1));
_b1 = B0_2 -_b0; _b1 = B0_2 - _b0;
_b2 = 0; _b2 = 0;
} }
break; break;
case MatchedBandPass0dB: /* Constant 0 dB peak gain */ case MatchedBandPass0dB: /* Constant 0 dB peak gain */
_a0 = 1.0; _a0 = 1.0;
set_vicanek_poles (W0, Q); set_vicanek_poles (W0, Q);
{ {
float fq = 2 * freq / _rate; float fq = 2 * freq / _rate;
float fq2 = fq * fq; float fq2 = fq * fq;
_b1 = -.5 * (1 - _a1 + _a2) * fq / Q / sqrt ((1 - fq2) * (1 - fq2) + fq2 / (Q * Q)); _b1 = -.5 * (1 - _a1 + _a2) * fq / Q / sqrt ((1 - fq2) * (1 - fq2) + fq2 / (Q * Q));
_b0 = .5 * ((1 + _a1 + _a2) / (W0 * Q) - _b1); _b0 = .5 * ((1 + _a1 + _a2) / (W0 * Q) - _b1);
_b2 = -_b0 - _b1; _b2 = -_b0 - _b1;
} }
break; break;
@ -382,8 +404,8 @@ Biquad::compute (Type type, double freq, double Q, double gain)
set_vicanek_poles (W0, Q, A); set_vicanek_poles (W0, Q, A);
calc_vicanek (W0, A0, A1, A2, phi0, phi1, phi2); calc_vicanek (W0, A0, A1, A2, phi0, phi1, phi2);
{ {
const double AA = A * A; const double AA = A * A;
const double AAAA = AA * AA; const double AAAA = AA * AA;
const double R1 = (phi0 * A0 + phi1 * A1 + phi2 * A2) * AAAA; const double R1 = (phi0 * A0 + phi1 * A1 + phi2 * A2) * AAAA;
const double R2 = (A1 - A0 + 4 * (phi0 - phi1) * A2) * AAAA; const double R2 = (A1 - A0 + 4 * (phi0 - phi1) * A2) * AAAA;
@ -404,7 +426,7 @@ Biquad::compute (Type type, double freq, double Q, double gain)
break; break;
default: default:
abort(); /*NOTREACHED*/ abort (); /*NOTREACHED*/
break; break;
} }
@ -419,8 +441,8 @@ float
Biquad::dB_at_freq (float freq) const Biquad::dB_at_freq (float freq) const
{ {
const double W0 = (2.0 * M_PI * freq) / _rate; const double W0 = (2.0 * M_PI * freq) / _rate;
const float c1 = cosf (W0); const float c1 = cosf (W0);
const float s1 = sinf (W0); const float s1 = sinf (W0);
const float A = _b0 + _b2; const float A = _b0 + _b2;
const float B = _b0 - _b2; const float B = _b0 - _b2;
@ -432,13 +454,14 @@ Biquad::dB_at_freq (float freq) const
const float c = C * c1 + _a1; const float c = C * c1 + _a1;
const float d = D * s1; const float d = D * s1;
#define SQUARE(x) ( (x) * (x) ) #define SQUARE(x) ((x) * (x))
float rv = 20.f * log10f (sqrtf ((SQUARE(a) + SQUARE(b)) * (SQUARE(c) + SQUARE(d))) / (SQUARE(c) + SQUARE(d))); float rv = 20.f * log10f (sqrtf ((SQUARE (a) + SQUARE (b)) * (SQUARE (c) + SQUARE (d))) / (SQUARE (c) + SQUARE (d)));
if (!isfinite_local (rv)) { rv = 0; } if (!isfinite_local (rv)) {
return std::min (120.f, std::max(-120.f, rv)); rv = 0;
}
return std::min (120.f, std::max (-120.f, rv));
} }
Glib::Threads::Mutex FFTSpectrum::fft_planner_lock; Glib::Threads::Mutex FFTSpectrum::fft_planner_lock;
FFTSpectrum::FFTSpectrum (uint32_t window_size, double rate) FFTSpectrum::FFTSpectrum (uint32_t window_size, double rate)
@ -465,23 +488,23 @@ FFTSpectrum::init (uint32_t window_size, double rate)
assert (window_size > 0); assert (window_size > 0);
Glib::Threads::Mutex::Lock lk (fft_planner_lock); Glib::Threads::Mutex::Lock lk (fft_planner_lock);
_fft_window_size = window_size; _fft_window_size = window_size;
_fft_data_size = window_size / 2; _fft_data_size = window_size / 2;
_fft_freq_per_bin = rate / _fft_data_size / 2.f; _fft_freq_per_bin = rate / _fft_data_size / 2.f;
_fft_data_in = (float *) fftwf_malloc (sizeof(float) * _fft_window_size); _fft_data_in = (float*)fftwf_malloc (sizeof (float) * _fft_window_size);
_fft_data_out = (float *) fftwf_malloc (sizeof(float) * _fft_window_size); _fft_data_out = (float*)fftwf_malloc (sizeof (float) * _fft_window_size);
_fft_power = (float *) malloc (sizeof(float) * _fft_data_size); _fft_power = (float*)malloc (sizeof (float) * _fft_data_size);
reset (); reset ();
_fftplan = fftwf_plan_r2r_1d (_fft_window_size, _fft_data_in, _fft_data_out, FFTW_R2HC, FFTW_MEASURE); _fftplan = fftwf_plan_r2r_1d (_fft_window_size, _fft_data_in, _fft_data_out, FFTW_R2HC, FFTW_MEASURE);
hann_window = (float *) malloc(sizeof(float) * window_size); hann_window = (float*)malloc (sizeof (float) * window_size);
double sum = 0.0; double sum = 0.0;
for (uint32_t i = 0; i < window_size; ++i) { for (uint32_t i = 0; i < window_size; ++i) {
hann_window[i] = 0.5f - (0.5f * (float) cos (2.0f * M_PI * (float)i / (float)(window_size))); hann_window[i] = 0.5f - (0.5f * (float)cos (2.0f * M_PI * (float)i / (float)(window_size)));
sum += hann_window[i]; sum += hann_window[i];
} }
const double isum = 2.0 / sum; const double isum = 2.0 / sum;
@ -502,9 +525,9 @@ FFTSpectrum::reset ()
} }
void void
FFTSpectrum::set_data_hann (float const * const data, uint32_t n_samples, uint32_t offset) FFTSpectrum::set_data_hann (float const* const data, uint32_t n_samples, uint32_t offset)
{ {
assert(n_samples + offset <= _fft_window_size); assert (n_samples + offset <= _fft_window_size);
for (uint32_t i = 0; i < n_samples; ++i) { for (uint32_t i = 0; i < n_samples; ++i) {
_fft_data_in[i + offset] = data[i] * hann_window[i + offset]; _fft_data_in[i + offset] = data[i] * hann_window[i + offset];
} }
@ -528,7 +551,8 @@ FFTSpectrum::execute ()
} }
float float
FFTSpectrum::power_at_bin (const uint32_t b, const float norm) const { FFTSpectrum::power_at_bin (const uint32_t b, const float norm) const
{
assert (b < _fft_data_size); assert (b < _fft_data_size);
const float a = _fft_power[b] * norm; const float a = _fft_power[b] * norm;
return a > 1e-12 ? 10.0 * fast_log10 (a) : -INFINITY; return a > 1e-12 ? 10.0 * fast_log10 (a) : -INFINITY;
@ -542,7 +566,8 @@ Generator::Generator ()
} }
void void
Generator::set_type (Generator::Type t) { Generator::set_type (Generator::Type t)
{
_type = t; _type = t;
_b0 = _b1 = _b2 = _b3 = _b4 = _b5 = _b6 = 0; _b0 = _b1 = _b2 = _b3 = _b4 = _b5 = _b6 = 0;
_pass = false; _pass = false;
@ -550,22 +575,22 @@ Generator::set_type (Generator::Type t) {
} }
void void
Generator::run (float *data, const uint32_t n_samples) Generator::run (float* data, const uint32_t n_samples)
{ {
switch (_type) { switch (_type) {
default: default:
case UniformWhiteNoise: case UniformWhiteNoise:
for (uint32_t i = 0; i < n_samples; ++i) { for (uint32_t i = 0; i < n_samples; ++i) {
data[i] = randf(); data[i] = randf ();
} }
break; break;
case GaussianWhiteNoise: case GaussianWhiteNoise:
for (uint32_t i = 0 ; i < n_samples; ++i) { for (uint32_t i = 0; i < n_samples; ++i) {
data[i] = 0.7079f * grandf(); data[i] = 0.7079f * grandf ();
} }
break; break;
case PinkNoise: case PinkNoise:
for (uint32_t i = 0 ; i < n_samples; ++i) { for (uint32_t i = 0; i < n_samples; ++i) {
const float white = .39572f * randf (); const float white = .39572f * randf ();
_b0 = .99886f * _b0 + white * .0555179f; _b0 = .99886f * _b0 + white * .0555179f;
_b1 = .99332f * _b1 + white * .0750759f; _b1 = .99332f * _b1 + white * .0750759f;
@ -606,12 +631,12 @@ Generator::grandf ()
do { do {
x1 = randf (); x1 = randf ();
x2 = randf (); x2 = randf ();
r = x1 * x1 + x2 * x2; r = x1 * x1 + x2 * x2;
} while ((r >= 1.0f) || (r < 1e-22f)); } while ((r >= 1.0f) || (r < 1e-22f));
r = sqrtf (-2.f * logf (r) / r); r = sqrtf (-2.f * logf (r) / r);
_pass = true; _pass = true;
_rn = r * x2; _rn = r * x2;
return r * x1; return r * x1;
} }