overhaul region/range spectrum analysis

This commit is contained in:
Robin Gareus 2016-05-22 19:29:08 +02:00
parent ef365d0310
commit 1b3b42403b
6 changed files with 481 additions and 455 deletions

View file

@ -14,7 +14,6 @@
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef COMPILER_MSVC
@ -40,12 +39,15 @@ using std::min; using std::max;
#include "fft_graph.h"
#include "analysis_window.h"
#include "public_editor.h"
#include "i18n.h"
using namespace std;
using namespace Gtk;
using namespace Gdk;
FFTGraph::FFTGraph(int windowSize)
FFTGraph::FFTGraph (int windowSize)
{
_logScale = 0;
@ -56,125 +58,127 @@ FFTGraph::FFTGraph(int windowSize)
_a_window = 0;
_show_minmax = false;
_show_normalized = false;
_show_minmax = false;
_show_normalized = false;
_show_proportional = false;
setWindowSize(windowSize);
setWindowSize (windowSize);
}
void
FFTGraph::setWindowSize(int windowSize)
FFTGraph::setWindowSize (int windowSize)
{
if (_a_window) {
Glib::Threads::Mutex::Lock lm (_a_window->track_list_lock);
setWindowSize_internal(windowSize);
setWindowSize_internal (windowSize);
} else {
setWindowSize_internal(windowSize);
setWindowSize_internal (windowSize);
}
}
void
FFTGraph::setWindowSize_internal(int windowSize)
FFTGraph::setWindowSize_internal (int windowSize)
{
// remove old tracklist & graphs
if (_a_window) {
_a_window->clear_tracklist();
_a_window->clear_tracklist ();
}
_windowSize = windowSize;
_dataSize = windowSize / 2;
if (_in != 0) {
fftwf_destroy_plan(_plan);
free(_in);
fftwf_destroy_plan (_plan);
free (_in);
_in = 0;
}
if (_out != 0) {
free(_out);
free (_out);
_out = 0;
}
if (_hanning != 0) {
free(_hanning);
free (_hanning);
_hanning = 0;
}
if (_logScale != 0) {
free(_logScale);
free (_logScale);
_logScale = 0;
}
// When destroying, window size is set to zero to free up memory
if (windowSize == 0)
if (windowSize == 0) {
return;
}
// FFT input & output buffers
_in = (float *) fftwf_malloc(sizeof(float) * _windowSize);
_out = (float *) fftwf_malloc(sizeof(float) * _windowSize);
_in = (float *) fftwf_malloc (sizeof (float) * _windowSize);
_out = (float *) fftwf_malloc (sizeof (float) * _windowSize);
// Hanning window
_hanning = (float *) malloc(sizeof(float) * _windowSize);
_hanning = (float *) malloc (sizeof (float) * _windowSize);
// normalize the window
double sum = 0.0;
for (int i=0; i < _windowSize; i++) {
_hanning[i]=0.81f * ( 0.5f - (0.5f * (float) cos(2.0f * M_PI * (float)i / (float)(_windowSize))));
for (unsigned int i = 0; i < _windowSize; ++i) {
_hanning[i] = 0.5f - (0.5f * (float) cos (2.0f * M_PI * (float)i / (float)(_windowSize)));
sum += _hanning[i];
}
double isum = 1.0 / sum;
double isum = 2.0 / sum;
for (int i=0; i < _windowSize; i++) {
for (unsigned int i = 0; i < _windowSize; i++) {
_hanning[i] *= isum;
}
_logScale = (int *) malloc(sizeof(int) * _dataSize);
//float count = 0;
for (int i = 0; i < _dataSize; i++) {
_logScale = (int *) malloc (sizeof (int) * _dataSize);
for (unsigned int i = 0; i < _dataSize; i++) {
_logScale[i] = 0;
}
_plan = fftwf_plan_r2r_1d(_windowSize, _in, _out, FFTW_R2HC, FFTW_ESTIMATE);
_plan = fftwf_plan_r2r_1d (_windowSize, _in, _out, FFTW_R2HC, FFTW_MEASURE);
}
FFTGraph::~FFTGraph()
FFTGraph::~FFTGraph ()
{
// This will free everything
setWindowSize(0);
setWindowSize (0);
}
bool
FFTGraph::on_expose_event (GdkEventExpose* /*event*/)
{
redraw();
redraw ();
return true;
}
FFTResult *
FFTGraph::prepareResult(Gdk::Color color, string trackname)
FFTGraph::prepareResult (Gdk::Color color, string trackname)
{
FFTResult *res = new FFTResult(this, color, trackname);
FFTResult *res = new FFTResult (this, color, trackname);
return res;
}
void
FFTGraph::set_analysis_window(AnalysisWindow *a_window)
FFTGraph::set_analysis_window (AnalysisWindow *a_window)
{
_a_window = a_window;
}
void
FFTGraph::draw_scales(Glib::RefPtr<Gdk::Window> window)
int
FFTGraph::draw_scales (Glib::RefPtr<Gdk::Window> window)
{
int label_height = v_margin;
Glib::RefPtr<Gtk::Style> style = get_style();
Glib::RefPtr<Gdk::GC> black = style->get_black_gc();
Glib::RefPtr<Gdk::GC> white = style->get_white_gc();
Glib::RefPtr<Gtk::Style> style = get_style ();
Glib::RefPtr<Gdk::GC> black = style->get_black_gc ();
Glib::RefPtr<Gdk::GC> white = style->get_white_gc ();
window->draw_rectangle(black, true, 0, 0, width, height);
window->draw_rectangle (black, true, 0, 0, width, height);
/**
* 4 5
@ -186,97 +190,121 @@ FFTGraph::draw_scales(Glib::RefPtr<Gdk::Window> window)
**/
// Line 1
window->draw_line(white, h_margin, v_margin, h_margin, height - v_margin );
window->draw_line (white, hl_margin, v_margin, hl_margin, height - v_margin);
// Line 2
window->draw_line(white, width - h_margin + 1, v_margin, width - h_margin + 1, height - v_margin );
window->draw_line (white, width - hr_margin + 1, v_margin, width - hr_margin + 1, height - v_margin);
// Line 3
window->draw_line(white, h_margin, height - v_margin, width - h_margin, height - v_margin );
window->draw_line (white, hl_margin, height - v_margin, width - hr_margin, height - v_margin);
#define DB_METRIC_LENGTH 8
// Line 4
window->draw_line(white, h_margin - DB_METRIC_LENGTH, v_margin, h_margin, v_margin );
window->draw_line (white, 3, v_margin, hl_margin, v_margin);
// Line 5
window->draw_line(white, width - h_margin + 1, v_margin, width - h_margin + DB_METRIC_LENGTH, v_margin );
window->draw_line (white, width - hr_margin + 1, v_margin, width - 3, v_margin);
if (graph_gc == 0) {
graph_gc = GC::create( get_window() );
graph_gc = GC::create (get_window ());
}
Color grey;
grey.set_rgb_p(0.2, 0.2, 0.2);
graph_gc->set_rgb_fg_color( grey );
grey.set_rgb_p (0.2, 0.2, 0.2);
graph_gc->set_rgb_fg_color (grey);
if (layout == 0) {
layout = create_pango_layout ("");
layout->set_font_description (get_style()->get_font());
layout->set_font_description (get_style ()->get_font ());
}
// Draw logscale
int logscale_pos = 0;
int position_on_scale;
// Draw x-axis scale 1/3 octaves centered around 1K
int overlap = 0;
// make sure 1K (x=0) is visible
for (int x = 0; x < 27; ++x) {
float freq = powf (2.f, x / 3.0) * 1000.f;
if (freq <= _fft_start) { continue; }
if (freq >= _fft_end) { break; }
/* TODO, write better scales and change the log function so that octaves are of equal pixel length
float scale_points[10] = { 55.0, 110.0, 220.0, 440.0, 880.0, 1760.0, 3520.0, 7040.0, 14080.0, 28160.0 };
const float pos = currentScaleWidth * logf (freq / _fft_start) / _fft_log_base;
const int coord = floor (hl_margin + pos);
for (int x = 0; x < 10; x++) {
if (coord < overlap) {
continue;
}
// i = 0.. _dataSize-1
float freq_at_bin = (SR/2.0) * ((double)i / (double)_dataSize);
freq_at_pixel = FFT_START * exp( FFT_RANGE * pixel / (double)(currentScaleWidth - 1) );
}
*/
for (int x = 1; x < 8; x++) {
position_on_scale = (int)floor( (double)currentScaleWidth*(double)x/8.0);
while (_logScale[logscale_pos] < position_on_scale)
logscale_pos++;
int coord = (int)(v_margin + 1.0 + position_on_scale);
int SR = 44100;
int rate_at_pos = (int)((double)(SR/2) * (double)logscale_pos / (double)_dataSize);
char buf[32];
if (rate_at_pos < 1000)
snprintf(buf,32,"%dHz",rate_at_pos);
else
snprintf(buf,32,"%dk",(int)floor( (float)rate_at_pos/(float)1000) );
std::string label = buf;
layout->set_text(label);
window->draw_line(graph_gc, coord, v_margin, coord, height - v_margin - 1);
int width, height;
layout->get_pixel_size (width, height);
window->draw_layout(white, coord - width / 2, v_margin / 2, layout);
std::stringstream ss;
if (freq >= 10000) {
ss << std::setprecision (1) << std::fixed << freq / 1000 << "K";
} else if (freq >= 1000) {
ss << std::setprecision (2) << std::fixed << freq / 1000 << "K";
} else {
ss << std::setprecision (0) << std::fixed << freq << "Hz";
}
layout->set_text (ss.str ());
int lw, lh;
layout->get_pixel_size (lw, lh);
overlap = coord + lw + 3;
if (coord + lw / 2 > width - hr_margin - 2) {
break;
}
if (v_margin / 2 + lh > label_height) {
label_height = v_margin / 2 + lh;
}
window->draw_line (graph_gc, coord, v_margin, coord, height - v_margin - 1);
window->draw_layout (white, coord - lw / 2, v_margin / 2, layout);
}
// now from 1K down to 4Hz
for (int x = 0; x > -24; --x) {
float freq = powf (2.f, x / 3.0) * 1000.f;
if (freq >= _fft_end) { continue; }
if (freq <= _fft_start) { break; }
const float pos = currentScaleWidth * logf (freq / _fft_start) / _fft_log_base;
const int coord = floor (hl_margin + pos);
if (x != 0 && coord > overlap) {
continue;
}
std::stringstream ss;
if (freq >= 10000) {
ss << std::setprecision (1) << std::fixed << freq / 1000 << "K";
} else if (freq >= 1000) {
ss << std::setprecision (2) << std::fixed << freq / 1000 << "K";
} else {
ss << std::setprecision (0) << std::fixed << freq << "Hz";
}
layout->set_text (ss.str ());
int lw, lh;
layout->get_pixel_size (lw, lh);
overlap = coord - lw - 3;
if (coord - lw / 2 < hl_margin + 2) {
break;
}
if (x == 0) {
// just get overlap position
continue;
}
if (v_margin / 2 + lh > label_height) {
label_height = v_margin / 2 + lh;
}
window->draw_line (graph_gc, coord, v_margin, coord, height - v_margin - 1);
window->draw_layout (white, coord - lw / 2, v_margin / 2, layout);
}
return label_height;
}
void
FFTGraph::redraw()
FFTGraph::redraw ()
{
Glib::Threads::Mutex::Lock lm (_a_window->track_list_lock);
draw_scales(get_window());
int yoff = draw_scales (get_window ());
if (_a_window == 0)
return;
@ -284,57 +312,105 @@ FFTGraph::redraw()
if (!_a_window->track_list_ready)
return;
float minf;
float maxf;
TreeNodeChildren track_rows = _a_window->track_list.get_model ()->children ();
if (!_show_normalized) {
maxf = 0.0f;
minf = -108.0f;
} else {
minf = 999.0f;
maxf = -999.0f;
for (TreeIter i = track_rows.begin (); i != track_rows.end (); i++) {
TreeModel::Row row = *i;
FFTResult *res = row[_a_window->tlcols.graph];
// disregard fft analysis from empty signals
if (res->minimum (_show_proportional) == res->maximum (_show_proportional)) {
continue;
}
// don't include invisible graphs
if (!row[_a_window->tlcols.visible]) {
continue;
}
minf = std::min (minf, res->minimum (_show_proportional));
maxf = std::max (maxf, res->maximum (_show_proportional));
}
}
// clamp range, > -200dBFS, at least 24dB (two y-axis labels) range
minf = std::max (-200.f, minf);
if (maxf <= minf) {
return;
}
if (maxf - minf < 24) {
maxf += 6.f;
minf = maxf - 24.f;
}
cairo_t *cr;
cr = gdk_cairo_create(GDK_DRAWABLE(get_window()->gobj()));
cairo_set_line_width(cr, 1.5);
cairo_translate(cr, (float)v_margin + 1.0, (float)h_margin);
cr = gdk_cairo_create (GDK_DRAWABLE (get_window ()->gobj ()));
cairo_set_line_width (cr, 1.5);
cairo_translate (cr, hl_margin + 1, yoff);
float fft_pane_size_w = width - hl_margin - hr_margin;
float fft_pane_size_h = height - v_margin - 1 - yoff;
double pixels_per_db = (double)fft_pane_size_h / (double)(maxf - minf);
// draw y-axis dB
cairo_set_source_rgba (cr, .8, .8, .8, 1.0);
// Find "session wide" min & max
float minf = 1000000000000.0;
float maxf = -1000000000000.0;
int btm_lbl = fft_pane_size_h;
{
// y-axis legend
layout->set_text (_("dBFS"));
int lw, lh;
layout->get_pixel_size (lw, lh);
cairo_move_to (cr, -2 - lw, fft_pane_size_h - lh / 2);
pango_cairo_update_layout (cr, layout->gobj ());
pango_cairo_show_layout (cr, layout->gobj ());
btm_lbl = fft_pane_size_h - lh;
}
TreeNodeChildren track_rows = _a_window->track_list.get_model()->children();
for (int x = -6; x >= -200; x -= 12) {
float yp = 1.5 + fft_pane_size_h - rint ((x - minf) * pixels_per_db);
for (TreeIter i = track_rows.begin(); i != track_rows.end(); i++) {
assert (layout);
std::stringstream ss;
ss << x;
layout->set_text (ss.str ());
int lw, lh;
layout->get_pixel_size (lw, lh);
TreeModel::Row row = *i;
FFTResult *res = row[_a_window->tlcols.graph];
// disregard fft analysis from empty signals
if (res->minimum() == res->maximum()) {
if (yp + 2 + lh / 2 > btm_lbl) {
continue;
}
if (yp < 2 + lh / 2) {
continue;
}
if ( res->minimum() < minf) {
minf = res->minimum();
}
cairo_set_source_rgba (cr, .8, .8, .8, 1.0);
cairo_move_to (cr, -2 - lw, yp - lh / 2);
pango_cairo_update_layout (cr, layout->gobj ());
pango_cairo_show_layout (cr, layout->gobj ());
if ( res->maximum() > maxf) {
maxf = res->maximum();
}
cairo_set_source_rgba (cr, .2, .2, .2, 1.0);
cairo_move_to (cr, 0, yp);
cairo_line_to (cr, fft_pane_size_w, yp);
cairo_stroke (cr);
}
if (!_show_normalized) {
minf = -150.0f;
maxf = 0.0f;
}
cairo_rectangle (cr, 1, 1, fft_pane_size_w, fft_pane_size_h);
cairo_clip (cr);
//int graph_height = height - 2 * h_margin;
float fft_pane_size_w = (float)(width - 2*v_margin) - 1.0;
float fft_pane_size_h = (float)(height - 2*h_margin);
double pixels_per_db = (double)fft_pane_size_h / (double)(maxf - minf);
cairo_rectangle(cr, 0.0, 0.0, fft_pane_size_w, fft_pane_size_h);
cairo_clip(cr);
for (TreeIter i = track_rows.begin(); i != track_rows.end(); i++) {
cairo_set_line_cap (cr, CAIRO_LINE_CAP_BUTT);
cairo_set_line_join (cr, CAIRO_LINE_JOIN_ROUND);
for (TreeIter i = track_rows.begin (); i != track_rows.end (); i++) {
TreeModel::Row row = *i;
// don't show graphs for tracks which are deselected
@ -345,144 +421,117 @@ FFTGraph::redraw()
FFTResult *res = row[_a_window->tlcols.graph];
// don't show graphs for empty signals
if (res->minimum() == res->maximum()) {
if (res->minimum (_show_proportional) == res->maximum (_show_proportional)) {
continue;
}
float mpp;
float X,Y;
if (_show_minmax) {
mpp = -1000000.0;
cairo_set_source_rgba(cr, res->get_color().get_red_p(), res->get_color().get_green_p(), res->get_color().get_blue_p(), 0.30);
cairo_move_to(cr, 0.5f + (float)_logScale[0], 0.5f + (float)( fft_pane_size_h - (int)floor( (res->maxAt(0) - minf) * pixels_per_db) ));
X = 0.5f + _logScale[0];
Y = 1.5f + fft_pane_size_h - pixels_per_db * (res->maxAt (0, _show_proportional) - minf);
cairo_move_to (cr, X, Y);
// Draw the line of maximum values
for (int x = 1; x < res->length(); x++) {
if (res->maxAt(x) > mpp)
mpp = res->maxAt(x);
mpp = fmax(mpp, minf);
mpp = fmin(mpp, maxf);
mpp = minf;
for (unsigned int x = 1; x < res->length () - 1; ++x) {
mpp = std::max (mpp, res->maxAt (x, _show_proportional));
// If the next point on the log scale is at the same location,
// don't draw yet
if (x + 1 < res->length() && _logScale[x] == _logScale[x + 1]) {
if (_logScale[x] == _logScale[x + 1]) {
continue;
}
float X = 0.5f + (float)_logScale[x];
float Y = 0.5f + (float)( fft_pane_size_h - (int)floor( (mpp - minf) * pixels_per_db) );
cairo_line_to(cr, X, Y);
mpp = -1000000.0;
mpp = fmin (mpp, maxf);
X = 0.5f + _logScale[x];
Y = 1.5f + fft_pane_size_h - pixels_per_db * (mpp - minf);
cairo_line_to (cr, X, Y);
mpp = minf;
}
mpp = +10000000.0;
mpp = maxf;
// Draw back to the start using the minimum value
for (int x = res->length()-1; x >= 0; x--) {
if (res->minAt(x) < mpp)
mpp = res->minAt(x);
mpp = fmax(mpp, minf);
mpp = fmin(mpp, maxf);
for (int x = res->length () - 1; x >= 0; --x) {
mpp = std::min (mpp, res->minAt (x, _show_proportional));
// If the next point on the log scale is at the same location,
// don't draw yet
if (x - 1 > 0 && _logScale[x] == _logScale[x - 1]) {
if (_logScale[x] == _logScale[x + 1]) {
continue;
}
float X = 0.5f + (float)_logScale[x];
float Y = 0.5f + (float)( fft_pane_size_h - (int)floor( (mpp - minf) * pixels_per_db) );
cairo_line_to(cr, X, Y );
mpp = +10000000.0;
mpp = fmax (mpp, minf);
X = 0.5f + _logScale[x];
Y = 1.5f + fft_pane_size_h - pixels_per_db * (mpp - minf);
cairo_line_to (cr, X, Y);
mpp = maxf;
}
cairo_close_path(cr);
cairo_fill(cr);
cairo_set_source_rgba (cr, res->get_color ().get_red_p (), res->get_color ().get_green_p (), res->get_color ().get_blue_p (), 0.30);
cairo_close_path (cr);
cairo_fill (cr);
}
// draw max of averages
X = 0.5f + _logScale[0];
Y = 1.5f + fft_pane_size_h - pixels_per_db * (res->avgAt (0, _show_proportional) - minf);
cairo_move_to (cr, X, Y);
mpp = minf;
for (unsigned int x = 0; x < res->length () - 1; x++) {
mpp = std::max (mpp, res->avgAt (x, _show_proportional));
// Set color from track
cairo_set_source_rgb(cr, res->get_color().get_red_p(), res->get_color().get_green_p(), res->get_color().get_blue_p());
mpp = -1000000.0;
cairo_move_to(cr, 0.5, fft_pane_size_h-0.5);
for (int x = 0; x < res->length(); x++) {
if (res->avgAt(x) > mpp)
mpp = res->avgAt(x);
mpp = fmax(mpp, minf);
mpp = fmin(mpp, maxf);
// If the next point on the log scale is at the same location,
// don't draw yet
if (x + 1 < res->length() && _logScale[x] == _logScale[x + 1]) {
if (_logScale[x] == _logScale[x + 1]) {
continue;
}
cairo_line_to(cr, 0.5f + (float)_logScale[x], 0.5f + (float)( fft_pane_size_h - (int)floor( (mpp - minf) * pixels_per_db) ));
mpp = fmax (mpp, minf);
mpp = fmin (mpp, maxf);
mpp = -1000000.0;
X = 0.5f + _logScale[x];
Y = 1.5f + fft_pane_size_h - pixels_per_db * (mpp - minf);
cairo_line_to (cr, X, Y);
mpp = minf;
}
cairo_stroke(cr);
cairo_set_source_rgb (cr, res->get_color ().get_red_p (), res->get_color ().get_green_p (), res->get_color ().get_blue_p ());
cairo_stroke (cr);
}
cairo_destroy(cr);
cairo_destroy (cr);
}
void
FFTGraph::on_size_request(Gtk::Requisition* requisition)
FFTGraph::on_size_request (Gtk::Requisition* requisition)
{
width = max(requisition->width, minScaleWidth + h_margin * 2);
height = max(requisition->height, minScaleHeight + 2 + v_margin * 2);
width = max (requisition->width, minScaleWidth + hl_margin + hr_margin);
height = max (requisition->height, minScaleHeight + 2 + v_margin * 2);
update_size();
update_size ();
requisition->width = width;;
requisition->height = height;
}
void
FFTGraph::on_size_allocate(Gtk::Allocation & alloc)
FFTGraph::on_size_allocate (Gtk::Allocation & alloc)
{
width = alloc.get_width();
height = alloc.get_height();
width = alloc.get_width ();
height = alloc.get_height ();
update_size();
update_size ();
DrawingArea::on_size_allocate (alloc);
}
void
FFTGraph::update_size()
FFTGraph::update_size ()
{
currentScaleWidth = width - h_margin*2;
currentScaleHeight = height - 2 - v_margin*2;
float SR = 44100;
float FFT_START = SR/(double)_dataSize;
float FFT_END = SR/2.0;
float FFT_RANGE = log( FFT_END / FFT_START);
float pixel = 0;
for (int i = 0; i < _dataSize; i++) {
float freq_at_bin = (SR/2.0) * ((double)i / (double)_dataSize);
float freq_at_pixel;
pixel--;
do {
pixel++;
freq_at_pixel = FFT_START * exp( FFT_RANGE * pixel / (double)(currentScaleWidth - 1) );
} while (freq_at_bin > freq_at_pixel);
_logScale[i] = (int)floor(pixel);
framecnt_t SR = PublicEditor::instance ().session ()->nominal_frame_rate ();
_fft_start = SR / (double)_dataSize;
_fft_end = .5 * SR;
_fft_log_base = logf (.5 * _dataSize);
currentScaleWidth = width - hl_margin - hr_margin;
_logScale[0] = 0;
for (unsigned int i = 1; i < _dataSize; ++i) {
_logScale[i] = floor (currentScaleWidth * logf (.5 * i) / _fft_log_base);
}
}