add new sample_aligned_superclock() method and use it when converting Beats to superclock

There can never be fractional audio time, and since superclock_t is used to represent audio time, when we
convert from Beat time, we should never, ever return a superclock value that does not correspond to
an integer number of samples.

This fixes a number of bugs, including any use of ARDOUR::Filter which writes a new (audio) file
to disk that must be an integer number of samples long, but may be derived from and later used
by a region that had an audio-time duration that is slightly longer (less than one sample)
than the audio file
This commit is contained in:
Paul Davis 2025-01-29 17:24:12 -07:00
parent 99ba22a4a4
commit 12ed9899ee
2 changed files with 38 additions and 33 deletions

View file

@ -513,49 +513,53 @@ TempoPoint::superclock_at (Temporal::Beats const & qn) const
TEMPO_MAP_ASSERT (qn >= _quarters); TEMPO_MAP_ASSERT (qn >= _quarters);
} }
superclock_t r;
if (!actually_ramped()) { if (!actually_ramped()) {
/* not ramped, use linear */ /* not ramped, use linear */
const Beats delta = qn - _quarters; const Beats delta = qn - _quarters;
const superclock_t spqn = superclocks_per_quarter_note (); const superclock_t spqn = superclocks_per_quarter_note ();
return _sclock + (spqn * delta.get_beats()) + muldiv_round (spqn, delta.get_ticks(), superclock_t (Temporal::ticks_per_beat)); r = _sclock + (spqn * delta.get_beats()) + muldiv_round (spqn, delta.get_ticks(), superclock_t (Temporal::ticks_per_beat));
}
superclock_t r;
const double log_expr = superclocks_per_quarter_note() * _omega * DoubleableBeats (qn - _quarters).to_double();
// std::cerr << "logexpr " << log_expr << " from " << superclocks_per_quarter_note() << " * " << _omega << " * " << (qn - _quarters) << std::endl;
if (log_expr < -1) {
r = _sclock + llrint (log (-log_expr - 1.0) / -_omega);
if (r < 0) {
std::cerr << "CASE 1: " << *this << endl << " scpqn = " << superclocks_per_quarter_note() << std::endl;
std::cerr << " for " << qn << " @ " << _quarters << " | " << _sclock << " + log (" << log_expr << ") "
<< log (-log_expr - 1.0)
<< " - omega = " << -_omega
<< " => "
<< r << std::endl;
abort ();
}
} else { } else {
r = _sclock + llrint (log1p (log_expr) / _omega);
// std::cerr << "r = " << _sclock << " + " << log1p (log_expr) / _omega << " => " << r << std::endl; const double log_expr = superclocks_per_quarter_note() * _omega * DoubleableBeats (qn - _quarters).to_double();
if (r < 0) { // std::cerr << "logexpr " << log_expr << " from " << superclocks_per_quarter_note() << " * " << _omega << " * " << (qn - _quarters) << std::endl;
std::cerr << "CASE 2: scpqn = " << superclocks_per_quarter_note() << std::endl;
std::cerr << " for " << qn << " @ " << _quarters << " | " << _sclock << " + log1p (" << superclocks_per_quarter_note() * _omega * DoubleableBeats (qn - _quarters).to_double() << " = " if (log_expr < -1) {
<< log1p (superclocks_per_quarter_note() * _omega * DoubleableBeats (qn - _quarters).to_double())
<< " => " r = _sclock + llrint (log (-log_expr - 1.0) / -_omega);
<< r << std::endl;
_map->dump (std::cerr); if (r < 0) {
abort (); std::cerr << "CASE 1: " << *this << endl << " scpqn = " << superclocks_per_quarter_note() << std::endl;
std::cerr << " for " << qn << " @ " << _quarters << " | " << _sclock << " + log (" << log_expr << ") "
<< log (-log_expr - 1.0)
<< " - omega = " << -_omega
<< " => "
<< r << std::endl;
abort ();
}
} else {
r = _sclock + llrint (log1p (log_expr) / _omega);
// std::cerr << "r = " << _sclock << " + " << log1p (log_expr) / _omega << " => " << r << std::endl;
if (r < 0) {
std::cerr << "CASE 2: scpqn = " << superclocks_per_quarter_note() << std::endl;
std::cerr << " for " << qn << " @ " << _quarters << " | " << _sclock << " + log1p (" << superclocks_per_quarter_note() * _omega * DoubleableBeats (qn - _quarters).to_double() << " = "
<< log1p (superclocks_per_quarter_note() * _omega * DoubleableBeats (qn - _quarters).to_double())
<< " => "
<< r << std::endl;
_map->dump (std::cerr);
abort ();
}
} }
} }
return r; /* Now round up to the nearest sample-equivalent superclock value */
return sample_aligned_superclock (r, TEMPORAL_SAMPLE_RATE);
} }
superclock_t superclock_t

View file

@ -48,6 +48,7 @@ static inline superclock_t superclock_ticks_per_second() { return _superclock_ti
static inline superclock_t superclock_to_samples (superclock_t s, int sr) { return PBD::muldiv_floor (s, sr, superclock_ticks_per_second()); } static inline superclock_t superclock_to_samples (superclock_t s, int sr) { return PBD::muldiv_floor (s, sr, superclock_ticks_per_second()); }
static inline superclock_t samples_to_superclock (int64_t samples, int sr) { return PBD::muldiv_round (samples, superclock_ticks_per_second(), superclock_t (sr)); } static inline superclock_t samples_to_superclock (int64_t samples, int sr) { return PBD::muldiv_round (samples, superclock_ticks_per_second(), superclock_t (sr)); }
static inline superclock_t sample_aligned_superclock (superclock_t s, int sr) { return PBD::muldiv_floor (s, sr, sr); }
LIBTEMPORAL_API extern int most_recent_engine_sample_rate; LIBTEMPORAL_API extern int most_recent_engine_sample_rate;